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COPYRIGHT
©2015. 3D Systems, Inc. All rights reserved. The content of this manual is furnished for informational use only, is subject to change 
without notice, and should not be construed as a commitment by 3D Systems, Inc. This document is copyrighted and contains 
proprietary information that is the property of 3D Systems, Inc. Touch, Geomagic Touch, Geomagic Touch X, Geomagic OpenHaptics, 
Geomagic, Phantom, Phantom Desktop, Phantom Omni, Sensable, 3D Systems, and the 3D Systems logo are registered trademarks, 
and Touch is a trademark, of 3D Systems, Inc. Use of the Cubify.com website constitutes acceptance of its Terms of Service and 
Privacy Policy. Any names, places, and/or events in this publication are not intended to correspond or relate in any way to individuals, 
groups or associations. Any similarity or likeness of the names, places, and/or events in this publication to those of any individual, living 
or dead, place, event, or that of any group or association is purely coincidental and unintentional.

WARRANTY
No warranties of any kind are created or extended by this publication. 3D Systems warrants that the Touch haptic device will be free 
from defects in materials and workmanship, during the applicable warranty period, when used under the normal conditions described 
in the documentation provided to you, including the respective User Guide. 3D Systems will promptly repair or replace the Touch, if 
required, to make it free of defects during the warranty period. This warranty excludes repairs required during the warranty period 
because of abnormal use or conditions (such as riots, floods, misuse, neglect or improper service by anyone except 3D Systems or its 
authorized service provider). For consumers who are covered by consumer protection laws or regulations in their country of purchase 
or, if different, their country of residence, the benefits conferred by our standard warranty are in addition to, and operate concurrently 
with, all rights and remedies conveyed by such consumer protection laws -and regulations, including but not limited to these additional 
rights.

LIMITATION OF LIABILITY
3D SYSTEMS WILL NOT BE RESPONSIBLE FOR CONSEQUENTIAL, EXEMPLARY OR INCIDENTAL DAMAGES (SUCH AS 
LOSS OF PROFIT OR EMPLOYEE’S TIME) REGARDLESS OF THE REASON. IN NO EVENT SHALL THE LIABILITY AND/OR 
OBLIGATIONS OF 3D SYSTEMS ARISING OUT OF THE PURCHASE, LEASE, LICENSE AND/OR USE OF THE EQUIPMENT BY 
YOU OR OTHERS EXCEED THE PURCHASE PRICE.
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1 PREFACE

Congratulations on your purchase of the OpenHaptics Toolkit version 3.3.0! 

Should you encounter any difficulties while setting up or learning the application, we provide a variety of resources to help you learn the 
product. These are described below in “Resources for Learning the OpenHaptics Toolkit”.

OVERVIEW
This guide explains the OpenHaptics® toolkit. This document will introduce you to the architecture of the toolkit, how it works, and what 
you can do with it. The guide will also introduce you to the fundamental components of creating haptic environments. and walk you 
through installing the toolkit and deploying your haptically enabled application.

WHAT IS HAPTICS?
Haptics is the science of incorporating the sense of touch and control into computer applications through force (kinesthetic) or tactile 
feedback. By using special input/output devices—called haptic devices—with a haptically enabled application, users can feel and 
manipulate virtual three-dimensional objects. The type of feedback used to convey the sense of touch is determined by the type of 
haptic device being used. 

Application areas for haptics are varied and continually expanding. These include:

• Surgical simulation and medical training

• Painting, sculpting, and CAD

• Military applications such as aerospace and military training and simulation

• Assistive technology for the blind or visually impaired

• Simple interaction techniques with the standard user interface such as opening/closing windows, and interacting with menus 

• Gaming

Audience
This guide assumes that the reader has an intermediate to advanced background in software development, is familiar with the C 
programming language, and is somewhat familiar with 3D graphics programming. Although the core OpenHaptics toolkit is C based, 
some of the utility libraries and the source code examples use C++. 

The QuickHaptics™ micro API is implemented in the C++ programming language and makes use of the Standard Template Library 
(STL). To learn more about C++ programming, it is recommended that you consult a reference such as the C++ Primer Plus by Stephen 
Prata or Ivor Horton’s Beginning Visual C++ 2005. To learn more about Open GL® functions and commands, see OpenGL, A Primer by 
Edward Angel.

For additional information about haptics, see the Developer Support Center.

1
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RESOURCES FOR LEARNING THE OPENHAPTICS TOOLKIT
The following documentation and other materials are provided to assist you in learning about OpenHaptics:

OpenHaptics Installation Guide This guide walks you through installing the toolkit and deploying your haptically enabled 
application. Detailed instructions for installing the Geomagic® Touch™ haptic device can be found in the Geomagic Touch Device 
Guide that came with your device. This can also be found on the OpenHaptics CD.

OpenHaptics Programmer’s Guide This guide explains the OpenHaptics toolkit (which includes the QuickHaptics™ micro 
API), and introduces you to the architecture of the toolkit, how it works, and what you can do with it. The guide will also introduce you to 
the fundamental components of creating haptic environments.

OpenHaptics API Reference This manual is meant to be used as a companion to the OpenHaptics Toolkit Programmer’s Guide. 
It contains reference pages to all the QuickHaptics micro API and OpenHaptics toolkit HDAPI and HLAPI functions and types as well as 
appendices with tables that describe all the parameters.

Source Code Examples Several examples with source code to illustrate commonly used functionality of QuickHaptics, the 
HDAPI and HLAPI are installed with the toolkit. These include both console examples and graphics examples. A guide to these 
examples is located in the folder <OpenHaptics Install directory>/doc. 

Developer Support Center This is described in more detail below.

THE DEVELOPER SUPPORT CENTER
A more recent version of this document may be available for download from the online Developer Support Center (DSC). To access the 
DSC, go to http://dsc.sensable.com. 

The DSC provides customers with 24 x 7 access to the most current information and forums for the OpenHaptics toolkit. Please note 
that you will be asked to create a registration profile and have your customer information authenticaed before you will have access to 
the DSC.
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2 INTRODUCTION

The OpenHaptics toolkit includes the QuickHaptics micro API, Haptic Device API (HDAPI), Haptic Library API (HLAPI), Utilities, 
Geomagic Touch Device Drivers (GTDD), Source Code Examples, this Programmer’s Guide and the API Reference.

QuickHaptics is a micro API that makes it fast and easy to write new haptic applications or to add haptics to existing applications.Built-
in geometry parsers and intelligent default parameters makes it possible to set up haptics/graphics scenes with a minimal amount of 
code. 

The HDAPI provides low-level access to the haptic device, enables haptics programmers to render forces directly, offers control over 
configuring the runtime behavior of the drivers, and provides convenient utility features and debugging aids.

The HLAPI provides high-level haptic rendering and is designed to be familiar to OpenGL® API programmers. It allows significant 
reuse of existing OpenGL code and greatly simplifies synchronization of the haptics and graphics threads. The Geomagic Touch 
Device Drivers support all currently shipping Touch devices.

WHAT IS OPENHAPTICS 3.3.0?
OpenHaptics 3.3.0 tries to make programming simpler by encapsulating the basic steps common to all haptics/graphics applications. 
This encapsulation is implemented in the C++ classes of the QuickHaptics micro API. By anticipating typical use scenarios, a wide 
range of default parameter settings is put into place that allow the user to code haptically enabled applications very efficiently.

The common steps required by haptics/graphics applications include:

• Parsing geometry files from popular animation packages

• Creating graphics windows and initializing the OpenGL environment

• Initializing one or multiple haptics devices

• Scene and camera design

• Mapping force and stiffness parameters to objects in the scene

• Setting up callback responses to interactions
Through an informed choice of default values for haptic and graphics parameters, a programmer can create a viable scene without 
the need to explicitly define the camera location, device space parameters, or settings for various shape properties. See “Table: 3-1: 
Default Parameter Values for Shape and Display Windows” on page 63.The first three programming examples in the next section 
shows how QuickHaptics can be used to prototype relatively complex scenes with less than a page of C++ code and represents the 
top of our pyramid.

In the second QuickHaptics level are functions that provide custom force effects, more flexible model interactions, and user-
defined callback functions. The third level of the pyramid shows that QuickHaptics is built on the foundation provided by the existing 
OpenHaptics 2.0 HL and HD functions. In most cases, applications previously developed in OH 2.0 should run with little to no 
modification in OpenHaptics 3.3.0.

The following diagram illustrates the relationship between the QuickHaptics micro API and the existing HD and HL layers of 
OpenHaptics.

OpenHaptics vs. QuickHaptics micro API Functionality

Commands
representing

70-80%
of functionality

Commands representing
20-30% of functionality

Current HD/HL APIs

 Shape and graphics rendering

 Canned force effects

 Device button callbacks

 Custom shape and force effects

 Glue code between QuickHaptics and existing HL/HD API

2
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QUICKHAPTICS MICRO API CLASSES
The QuickHaptics micro API is implemented in C++ and defines four primary functional classes:

• DeviceSpace—Workspace through which the haptic device can move

• QHRenderer—base class for QHWin32 and QHGLUT. On-screen window that renders shapes from a camera viewpoint and lets the user 
feel those shapes with a haptic device

• Shape—Base class for one or more geometric objects that can be rendered both graphically and haptically

• Cursor—Graphical representation of the end point of the second link on the Touch device. This end point is sometimes called the haptic 
interface point (HIP), which is shown for the Touch in the figure below. The HIP is in the same corresponding location for other Touch 
devices.

Location of Haptic Interface Point (Touch)

QuickHaptics micro API Classes and Properties

QuickHaptics
Application

DeviceSpace
Class

QHWin32/QHGLUT
Class Shape Class Cursor Class

Force effects Callbacks

Constant force

Damping

Friction

Motion

Touch

Button

Camera OpenGL
world space Shape Primitives

Texture (JPG, 
BMP, etc)

Color

Spin/Orbit

Translate/Rotate/
Scale

TriMesh

3-D geometry formats

Deformation

Default TriMesh

Servo Loop

Callbacks

Graphics

3DS

OBJ

STL, PLY

Text

Normalized Screen Space
(0,0) to (1,1)

TrueType Font file
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DEVICESPACE CLASS
Conceptually, the DeviceSpace defines the force properties and user interaction through the haptic workspace for a particular Touch 
device. The DeviceSpace methods manage:

• Force effects—Friction, damping (degree of difficulty when moving through the space), and constant force.

• User Callbacks—Function calls that occur as a result of an event. Motion, a haptic "touch," or a button press are examples of events that 
can trigger a callback.

Haptic parameter default values in general are set for the middle of a haptic device’s range. This imparts at least a minimally realistic 
"feel" to objects within the scene.

QHWIN32 OR QHGLUT CLASS
These are “windowing” classes created specifically for use with Microsoft Win32 API or the OpenGL Utility Toolkit (GLUT), respectively. 
These classes inherit from the QHRenderer class that defines the following: 

• A simple display list for haptics and graphics

• OpenGL world space to Touch device space transformation 

• Simple camera and lighting models

World Space
OpenGL (Open Graphics Library) is a standard specification defining a cross-language cross-platform API for writing applications 
that produce 2D and 3D computer graphics.OpenHaptics uses OpenGL to define geometry and to implement its haptic rendering 
algorithms. In the end, what is displayed on the computer screen is a two-dimensional representation of the OpenGL world space. It 
is actually a projection of a three-dimensional frustrum (where the third dimension projects at some depth below the surface of the 
screen). This 3-D space is the world space.

The haptic device space can be described and addressed by a coordinate system. Although this physical space is constrained by 
the limitations of the haptic device (motor and encoder specifications), you want to view and manipulate objects relative to the world 
space you are creating. When you set up a world space, the haptic device space automatically maps onto the world space. By default, 
QuickHaptics micro API maximizes the mapping between the device space and the world space by applying a scaling factor. For 
example, a very small movement of the haptic device may scale up or translate to a much larger movement in the world space. By 
default, QuickHaptics uses the hluFitWorkpaceNonUniform() workspace mapping. See “Mapping” on page 111.

NOTE: In more advanced usage, you can override the default mapping and define your own custom world space. For example, 
you can define a world space where graphics are rendered normally but haptics only function within a small subset of the 
world space.

Camera
The camera establishes the viewpoint (eyepoint, in OpenGL parlance) into the world space, i.e. the camera defines a view into the 
world space and, by extension, the device space that is then mapped onto that world space. 

Rather than forcing shapes to fit within the confines of a world space dictated by the camera, the default QuickHaptics camera 
accommodates itself to the scene and, more specifically, to the shapes created by the programmer within that scene.
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The default location for the QuickHaptics camera is shown in the following diagram and is determined as follows:

Default QuickHaptics Camera Location

• Each shape that you define within the world space has an implied bounding box (rectangular prism) that encompasses the shape.

• All bounding boxes, when combined, comprise a single global bounding box that most closely contains all of the objects inside it.

• By default, the camera location is positioned such that a 22.5 degree angle is maintained between each endpoint of the front edge of the 
global bounding box and an imaginary line drawn from the camera to the midpoint of the edge.

• The default viewing direction for the camera is along the -Z (negative Z) axis.

Shape 1

Shape 2

Bounding box 1

Bounding box 2

Global bounding box

Camera location

Midpoint of
front edge

Endpoint of
front edge

Endpoint of
front edge

22.5 degrees

Camera orientation

Y
-Z

X

45 degrees
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The world space has two bounding planes. The front clipping plane establishes where the camera starts to see the world space—
anything closer to the camera will not be visible. The rear clipping plane sets the rear boundary of the camera—anything shape farther 
than that plane will not be visible. The default clipping planes are shown in the following diagram and are calculated as follows:

Default Clipping Planes for World Space

• The front clipping plane is located at half the distance from the camera location to the front edge of the global Shape bounding box.

• The rear clipping plane is located at 1.5 times the distance from the camera location to the rear edge of the global Shape bounding box.
The camera does not affect the device space directly. The camera first defines the usable limits of the world space and the haptic 
workspace is then mapped non-uniformly onto that world space. The default haptic workspace in QuickHaptics has a square frustrum 
shape and is defined by the blue lines in the figure above.

NOTE: For most applications, the default QuickHaptics camera is a great place to start, but programmers can easily modify 
camera parameters such as clipping plane locations and orientation (which direction is considered “up” in the world 
space). See “Example 5—Multiple Windows and Views (MultipleWindows)” on page 28 for an example of changing the default 
QuickHaptics camera parameters.

Shape 1

Shape 2

Global bounding box

MIN/2

MIN distance

MAX distance

1.5 * MAX

Rear edgeFront
edge

Camera
location

Near clipping plane

Far clipping plane

PHANTOM

TOUCH
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SHAPE CLASS
The Shape class defines the base class for all of the geometry primitives that can be included in the world space:

• Line 

• Plane

• Cone

• Cylinder

• Sphere

• Box

• TriMesh

• Text
Properties that can be applied to any of these primitives include, but are not limited to, textures, color, spin, position, and so on. 

The TriMesh primitive represents a 3-D model produced by industry standard 3-D modeling programs, including STL, OBJ, 3DS, and 
PLY formats. Because the TriMesh geometry naturally links vertices, edges and faces we have also implemented a simple way to use 
TriMesh’s as deformable spring-mass networks. Deformation is an experimental property that causes a shape to deform when touched 
by the haptic cursor. Euler integration is performed with a frame to frame timestep. This can be used to simulate elastic objects, but only 
with TriMesh shapes.

The default values for shape properties were selected to provide a realistic and comfortable visualization of the property to human eyes. 
For example, the default value for the spin() function is slow enough for people to track visually.

CURSOR CLASS
The Cursor class defines the haptic interface point. It pulls together information from all of the other QuickHaptics micro API classes 
because calculating the final Cursor location requires interaction with all of the components in a scene. It needs:

• Information from the DeviceSpace class for the location of the haptic interface point as from the Geomagic Touch Device Driver (GTDD). 
Because there can be more than one haptic device, there can be more than one cursor.

• World space information from the QHRenderer class. This information defines the transformation that allows the device space cursor posi-
tion to be drawn to the screen. 

• Information from the Shape class about the objects with which the cursor will interact and how the cursor should be represented on the 
screen.

Cursor Class Associations

The cursor can be either the default “blue cone” or you can load a TriMesh model to customize the shape of the cursor.

DeviceSpace Class

QHWin32 or QHGLUT Class

Shape Class

Cursor class 
brings together 

information from 
all other classes

Cursor Class
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DESIGN OF A TYPICAL QUICKHAPTICS MICRO API PROGRAM
A typical QuickHaptics micro API program has the following structure.

QuickHaptics micro API Program Flow

Although the diagram implies an order, only windowing needs to be defined first. You must define a window before you can place a 
shape within it; otherwise, QuickHaptics micro API will not know where to place the shape. 

The remaining steps can appear in any sequence, unless you intend to use multiple haptic devices. In the latter case, you must define 
the DeviceSpace for each device before you can define shapes.

OVERVIEW OF HLAPI VS. HDAPI
The HLAPI is designed for high-level haptics scene rendering. It is targeted for advanced OpenGL developers who are less familiar with 
haptics programming, but desire to quickly and easily add haptics to existing graphics applications.

The HDAPI is a low-level foundational layer for haptics. It is best suited for developers who are already familiar with haptic paradigms 
and sending forces directly. This includes those interested in haptics research, telepresence, and remote manipulations. Experts can 
still use HLAPI and HDAPI in conjunction with QuickHaptics to take advantage of all SDKs.

The HLAPI is built on top of the HDAPI and provides a higher level control of haptics than HDAPI, at the expense of flexibility in 
comparison to HDAPI. The HLAPI is primarily designed for ease of use to those well versed in OpenGL programming; for example, 
HLAPI programmers will not have to concern themselves with such lower level issues as designing force equations, handling thread 
safety and implementing highly efficient data structure for haptic rendering. HLAPI follows the traditional graphics techniques as 
found in the OpenGL API. Adding haptics to an object is a fairly trivial process that resembles the model used to represent the object 
graphically. Tactile properties, such a stiffness and friction, are similarly abstracted to materials. The HLAPI also provides event 
handling for ease of integration into applications.

For example, when using HDAPI, creating a haptic/graphics sphere involves writing the graphics code and creating scheduler callbacks 
for handling the sphere forces. When using HLAPI, the process involves creating a graphics sphere then calling hlBeginShape() with 
the desired haptic shape type when drawing the graphics sphere.

Define windowing

Define device space

Define shape(s)

Define cursor
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WHEN TO USE ONE OVER THE OTHER
HDAPI requires the developer to manage direct force rendering for the haptic device whereas HLAPI handles the computations of 
haptic rendering based on geometric primitives, transforms, and material properties. Direct force rendering with HDAPI requires efficient 
force rendering / collision detection algorithms and data structures. This is due to the high frequency of force refreshes required for 
stable closed-loop control of the haptic device. HLAPI differs in this regard, since it shields the developer from having to implement 
efficient force rendering algorithms and managing the synchronization of servo loop thread-safe data structures and state. 

HLAPI allows the developer to command the haptic rendering pipeline from the graphics rendering loop, which makes it significantly 
more approachable for a developer to introduce haptic rendering to an existing graphics loop driven application.

HLAPI enables an event driven programming model, which eases the implementation of complicated haptic interactions involving 
events like touching geometry, button clicks, and motion. HDAPI does not offer events as part of the API. However, the OpenHaptics 
toolkit does offer a HapticDevice C++ utility class that offers a basic event callback infrastructure for use with HDAPI.

HLAPI only deals with the device at the Cartesian space level whereas HDAPI offers access to lower-level control spaces, like the raw 
encoder and motor joint torque values.

WHAT PARTS CAN BE USED TOGETHER?
HLAPI is built on top of HDAPI, therefore developers can leverage pieces of functionality from HDAPI to augment an HLAPI program.

HDAPI must be used to initialize and configure the haptic device handle (HHD). The HHD from HDAPI is used by the HL haptic 
rendering context (HHLRC) to interface with the haptic device. This allows the developer to control behaviors for the haptic device 
that will be realized by the haptic rendering library. For instance, hdEnable()/hdDisable() can be used to turn on or off capabilities of 
HDAPI, like force output, force ramping, and max force clamping. 

HDAPI can be used to query properties and capabilities of the device, for instance: input and output DOF, the nominal max force, 
workspace dimensions.

HDAPI can be used to modify the rate of the servo loop. Increasing the servo loop rate has the benefits of improved stability and 
responsiveness of the device as well as increased nominal max stiffness of forces. However, this comes at the expense of higher CPU 
utilization (i.e. 2000 Hz means an update every 0.5 ms instead of 1 ms for the default 1000 Hz rate). Conversely, the servo loop rate 
can also be lowered to decrease the amount of CPU used for force rendering (i.e. 500 Hz means an update every 2 ms instead of 1 ms 
for the default 1000 Hz rate). This has the benefit of freeing up valuable CPU cycles for other threads, but at the expense of reduced 
stability of the device and lower nominal max stiffness.

HLAPI allows for custom effects. A custom effect is principally responsible for adding to or modifying a force to be sent to the haptic 
device. Since forces are computed in the servo loop thread, the user can choose to use HDAPI routines in tandem with the custom 
effect callback to gain access to additional information about the device, for instance, device velocity and instantaneous rate. In 
addition, the HDAPI scheduler can be used as a synchronization mechanism for custom effects so that the main application thread can 
safely modify state or data used by the effect.

Since the last hdEndFrame() will actually commit the force to the haptic device, please note that it is not necessary to call 
hdStartScheduler() or hdStopScheduler() when using HDAPI in tandem with HLAPI. HLAPI will manage starting and stopping the 
scheduler when the context is created and deleted as long as a valid handle to a haptic device is provided to the context. See “Haptic 
Frames” on page 88 for a more complete description.

Servo Loop
The servo loop refers to the tight control loop used to calculate forces to send to the haptic device. In order to render stable haptic 
feedback, this loop must be executed at a consistent 1khz rate or better. In order to maintain such a high update rate, the servo loop is 
generally executed in a separate, high-priority thread. This thread is referred to as the servo loop thread.
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OpenHaptics Overview

Monitor

OpenGL
context

HHLRC

HHD

QuickHaptics

HL API

HD API

User
Application

OpenGL
Depth and Feedback Buffers

30hz
graphics

loop

PDD

1khz servo
loop
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INTRODUCTION
Often, the easiest way to learn something new is by example. This chapter describes a number of QuickHaptics micro API programming 
examples in a tutorial format and tries to explain the most common tasks a haptics programmer may encounter. Hopefully, these 
software examples can serve two purposes:

• Provide an easy and fast learning path to creating haptically enabled, graphically rich applications. The examples are presented in order 
of increasing complexity, starting with creating a simple sphere that can be felt with the Touch.

• Present sample code snippets that a programmer can then modify to suit his or her own application development needs.

Choosing Win32 API vs. GLUT
Depending on the computer operating system, sometimes it can be a challenge to produce a program that merely displays a graphics 
window on the screen. QuickHaptics provides a simple interface that links an OpenGL graphics context to a Window. Depending on the 
chosen operating system, QuickHaptics supports both Microsoft’s Win32 API and the OpenGL Utility Toolkit (GLUT). Examples for both 
are included in this release. Here are some points to consider when choosing between these two Windowing systems:

• Win32 supports applications where multiple windows are required, GLUT does not. See “Example 5—Multiple Windows and Views (Multi-
pleWindows)” on page 28 where Front, Top and Right camera views are presented in multiple windows.

• GLUT code is OS platform independent, Win32 API only works within the Microsoft® Windows® OS. 

• Also note that Win32 application runtime errors are displayed in message boxes. The user needs to click OK in the message box to 
dismiss each error message. In contrast, all GLUT application runtime error messages are directed to the console.Location of Haptic 
Interface Point (Touch)

Initial Declarations for Win32 vs. GLUT Programs
The examples in this chapter only show the QuickHaptics micro API code for the main program (between curly braces {}).This section 
describes the declarations that must precede each main program.

Win32 API
Every Win32 QuickHaptics micro API program starts with an include statement for header files and then a WinMain declaration that 
serves as the entry point into the Windows API.

#include <QHHeadersWin32.h>

//WinMain creates a Microsoft Windows application. Its parameters

//specify instance, previous instance, command line parameters, and

//window show state, respectively.

int WINAPI WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine,

 int nCmdShow)

{

Line 1         //Main program line 1

Line 2         //Main program line 2

Line 3         //Main program line 3

and so on...        //Main program line n

}

As is the case for all Win32 API programs, WinMain’s parameters are:

• hInstance – Handle to the application instance. The instance is used by Windows as a reference to the application for event handling, 
message processing, and other tasks.

• hPrevInstance – Always NULL. 

• lpCmdLine – Pointer string used to hold any command-line arguments that may have been specified when the application began. 

• nCmdShow – Parameter that determines how the application’s window is displayed once it begins executing.
The actual program follows the WinMain declaration.
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GLUT: OpenGL Utility Toolkit
Every GLUT QuickHaptics micro API program starts with an include statement for the GLUT specific header files and then a void 
main() function that follows the standard C language convention. The basic form is:

#include <QHHeadersGLUT.h> //Include all necessary headers

void main(int argc, char *argv[])

{

Line 1 //Main program line 1

Line 2 //Main program line 2

Line 3 //Main program line 3

and so on... //Main program line n

}

Conventions Used in QuickHaptics Examples
The section title for each of the following examples describes what the program is supposed to do, followed by the name of the program 
in parentheses. Each of the programming examples can be found in the directory $(OH_SDK_BASE)/QuickHaptics/Examples. 
Whenever possible, both Microsoft Win32 and GLUT versions have been included for each example. 

For instance, Example 1—Creating a Shape (SimpleSphere) illustrates how to create a touchable shape taking advantage 
of the QuickHaptics defaults. The name of the program as it appears in Microsoft Visual Studio is SimpleSphereWin32 or 
SimpleSphereGLUT, for the Win32 API and GLUT versions respectively.

Each successive example builds on the code from the previous example. In general, new code lines added in successive examples 
are highlighted in bold type. The exception is “Example 7—Defining Custom Force Laws (SkullCoulombForce)” on page 34, which is 
nearly all new code.

NOTE: Unless otherwise specified, all x,y,z coordinate described in this chapter are in OpenGL worldspace where the x-axis 
is to the right, the y-axis is up and the z-axis points out of the screen. The origin refers to the point 0,0,0 in the OpenGL world 
space.

EXAMPLE 1—CREATING A SHAPE (SIMPLESPHERE)
This example shows how to set up a scene with both graphics and haptics, and creates a Shape (Sphere) within it. The default camera 
view is as described in the previous chapter and makes it so that the Sphere can be seen and felt with little trouble. Compare the eight 
lines of code in this example versus the 150 lines of code for the HL API graphics example at HL\graphics\HelloSphere.cpp.

#include  <QHHeadersWin32.h>

int  WINAPI WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR lpCmdLine, int nCmdShow )

{

QHWin32* DisplayObject = new QHWin32; //Create a display window

DeviceSpace* Omni = new DeviceSpace; //Open the default Touch

DisplayObject->tell(Omni); //Tell Display that omni exists

Sphere* SimpleSphere = new Sphere; //Create a default sphere

DisplayObject->tell(SimpleSphere); //Tell Display the sphere exists

Cursor* OmniCursor = new Cursor;  //Create a default cursor

DisplayObject->tell(OmniCursor); //Tell Display that a cursor exists

qhStart(); //Set everything in motion

}

}
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new QHWin32 creates the QuickHaptics micro API display window that contains the sphere. The default display window is sized at 500 
x 500 pixels in screen coordinates. The default background color is “custard”, but can be easily changed.

new DeviceSpace opens and initializes the haptics device. Because no argument is specified, the “Default Device” is used as specified 
in Geomagic Touch Setup. Note that you can also specify a particular device by supplying the device name from Geomagic Touch 
Setup as an argument. The tell() function registers the existence of Touch as a haptics device for the Display window.

new Sphere creates a default sphere of radius 0.5 units, positioned at the worldspace origin. The sphere is actually composed of a 
number of latitude and longitude subdivisions, with the default tesselation set to 20.The greater the number of subdivisions, the higher 
(smoother) the resolution of the surface.

new Cursor creates a default haptic cursor, as shown in the figure below. As is the case with the haptic device, you use the tell() 
function to register these entities with the DisplayObject in the QuickHaptics micro API. Finally, the qhStart() function is the main 
haptics and graphics loop for the application that draws the graphics to the Display and makes the Sphere “touchable” by the Touch.
Note that the code for a GLUT Display is nearly identical. The only difference is in the header file and the Display window setup. In 
GLUT, the code would be QHGLUT* DisplayObject = new QHGLUT(argc,argv):

Example 1 Output

Haptic interface point
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EXAMPLE 2—ADDING TEXTURE AND MOTION (EARTHSPIN)
This example uses the same scene and Shape as in Example 1, but applies a texture and default spin rate to the sphere to create an 
image of the spinning Earth.

#include  <QHHeadersWin32.h>

int  WINAPI WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance,

   LPSTR lpCmdLine, int nCmdShow ) 

{

QHWin32* DisplayObject = new QHWin32;    //Create a display window

DeviceSpace* Touch = new DeviceSpace;    //Use the default Touch device

DisplayObject->tell(Omni);      //Tell Display that omni exists

Sphere* SimpleSphere1 = new Sphere;    //Get a sphere

SimpleSphere1->setSpin();     //Make it spin

SimpleSphere1->setTexture(“models/earth.jpg”);   //Load the earth texture on it

DisplayObject->tell(SimpleSphere1);    //Tell Display the sphere exists

Cursor* OmniCursor = new Cursor;     //Create a default cursor

DisplayObject->tell(OmniCursor);     //Tell QuickHaptics that cursor exists

    

qhStart();       //Set everything in motion

}

The setSpin() method applies a default spin rate of 9 degrees per second to the sphere. This is slow enough for the eye to track 
comfortably. Note that the spin rate is independent of the graphics frame rate of the computer system, i.e. a fixed spin rate is maintained 
regardless of the system’s graphics frame rate. The default spin direction is clockwise and Y is the default axis of rotation.

The setTexture() method applies the specified graphic file (a map of the Earth, in this case) to the surface of the sphere. You can apply 
a texture to any shape. Baseline forms of most popular image file formats are supported including: bmp, jpg, png and tga.

Example 2 Output
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EXAMPLE 3—DEFINING MULTIPLE PRIMITIVE OBJECTS (COMPLEXSCENE)
This example adds several different kinds of 3D shapes and 2D text, each with various motion and haptics properties.

#include  <QHHeadersWin32.h>

int  WINAPI WinMain ( HINSTANCE hInstance, HINSTANCE hPrevInstance,

   LPSTR lpCmdLine, int nCmdShow ) 

{

QHWin32* DisplayObject = new QHWin32;    //create a Display window

DeviceSpace* Touch = new DeviceSpace;    //Use default Touch Device

DisplayObject->tell (Omni);

    

Sphere* SimpleSphere = new Sphere;    //Create a sphere

SimpleSphere->setSpin ();

SimpleSphere->setFriction ();

SimpleSphere->setTexture (“models/earth.jpg”);    //load the Earth texture

DisplayObject->tell (SimpleSphere);

//Create a box

Box* SimpleBox = new Box();

//Position it along the Y-axis

SimpleBox->setTranslation (0.0,0.8,0.0);

//Make it orbit counter clockwise, with half velocity, axis of revolution is

//parallel to the x axis, the center of rotation is the origin

SimpleBox->setOrbit (HL_CW,0.5,hduVector3Dd (1.0,0.0,0.0), hduVector3Dd (0.0,0.0,0.0));

//Make it spin counter clockwise with half velocity around the z axis

SimpleBox->setSpin (HL_CCW,1.0,hduVector3Dd (0.0,0.0,1.0));

SimpleBox->setTexture (“models/box.jpg”);

DisplayObject->tell (SimpleBox);

//Create a cone

Cone* SimpleCone = new Cone();

SimpleCone->setTranslation(1.5,0.0,0.0);

SimpleCone->setTexture (“models/brick.jpg”);

SimpleCone->setSpin (HL_CCW,0.5,hduVector3Dd (0.0,1.0,0.0));

SimpleCone->setFriction ();

DisplayObject->tell (SimpleCone);

//Create a cylinder

Cylinder* SimpleCylinder = new Cylinder ();

SimpleCylinder->setTranslation (-1.5,0.0,0.0);

SimpleCylinder->setTexture (“models/rusty.jpg”);

SimpleCylinder->setSpin (HL_CW,0.5,hduVector3Dd (0.0,1.0,0.0));
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//Make the Cylinder magnetic so the cursor sticks to it

SimpleCylinder->setMagnetic (true);

DisplayObject->tell (SimpleCylinder);

//Create text that says “Hello Haptics”

Text* SimpleText = new Text (50,”Hello Haptics”, “models/verdana.ttf”);

SimpleText->setTranslation (0.35,0.8,0.0);

SimpleText->setShapeColor (0.35,0.15,0.7);

DisplayObject->tell (SimpleText);

Cursor* OmniCursor = new Cursor;

DisplayObject->tell (OmniCursor);

//Start graphics-haptics loop

qhStart ();

}
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Example 3 Output

The program adds a few new Shape types and 2D Text to the example in the previous section. You can easily define the following 
primitives in the QuickHaptics micro API:

• Box

• Cone

• Cylinder

• Sphere

• Line

• Plane

• Text

• TriMesh
All primitives in the example (except for TriMesh) and their properties are described below. For an example of use of TriMesh primitives, 
see “Example 4—TriMesh Models and Event Callbacks (PickApples)” on page 24.

Box Parameters
new Box() creates a default cube of length, width, and height of 0.5, centered on the origin. setTranslation redefines its position in the 
OpenGL worldspace. setTranslation takes the expected three parameters, for X, Y, and Z coordinates respectively. 

The setOrbit function causes the Box to revolve around a specified point outside the box. setOrbit can take up to four parameters. The 
first parameter defines the orbit direction as either clockwise (shown) or counter-clockwise. The second parameter specifies the orbit 
speed and can vary from 0 to 1.0 (the example is set at 0.5 or half speed). The next two hduVector3Dd (x,y,z) are HLAPI data types 
that define the orbit axis and center of revolution, respectively, see “Vector/Matrix Math” on page 132. In this example, the axis of 
revolution is parallel to the X axis; and the box’s orbit is centered around the origin.

The setSpin function, previously described in “Example 2—Adding Texture and Motion (EarthSpin)” on page 20, defines the 
rotation of the box around its own axis. But, instead of accepting the default behavior, we are now specifying parameters. The first two 
parameters are the same as those used in the setOrbit function, and define the direction and speed of rotation (in this case, counter 
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clockwise and half speed). The third parameter hduVector3Dd specifies the axis of rotation (the Z axis in this case). 

The effect of applying both orbit and spin to the box is that the box is revolving around an external point and spinning along its own axis 
simultaneously.

Remaining Shapes
The haptic properties of the Earth have been changed through the setFriction() method. This applies a default roughness to the 
surface of the model.

The example also uses new Cone() and new Cylinder() to create those default shapes. new Cone() and new Cylinder() create 
a default cone and cylinder of radius 0.5 and height of 1.0. The center of the base of the cone or cylinder is positioned by default at 
the origin. Like the Sphere, the cone and cylinder are both defined by latitude and longitude subdivisions. In this case, the default  
resolution for each is 10 slices. Again, the greater the number of slices, the higher (smoother) the resolution of the surface.

The setTranslation function places the cylinder and cone -1.5 (to the left) and +1.5 (to the right) from the origin of the scene, 
respectively. Here, the setSpin function defines Y as the axis of rotation.

The cylinder also uses the setMagnetic “contact” function. When setMagnetic is set to true and the haptic cursor approaches the 
cylinder surface within a default value of 15 mm or less (the snap distance), the haptic interface point is pulled in towards the surface. 
The result is that the surface feels “sticky” with the Touch.

Text
Unlike the other Shapes, Text is defined in an orthographic screen space where (0, 0) is the bottom/left corner of the screen and (1, 
1) is the top/right corner. For completeness, the near clipping plane of this orthographic space is z = +1 and the far plane is z = -1. By 
default, Text is placed at (0, 0, -1). The setTranslation method can be used to reposition the text in the scene.

The example displays the phrase, “Hello Haptics”, which is defined with the new Text shape. The constructor is called with three 
parameters. The first defines the point size of the text and the second is the text string itself. The third specifies a TrueType font 
filename (.TTF) in the project directory which defines the typeface of the text. The default font used by QuickHaptics is Arial Black. On a 
Windows machine, many system fonts can be found at: C:\WINDOWS\Fonts.

EXAMPLE 4—TRIMESH MODELS AND EVENT CALLBACKS (PICKAPPLES)
Very often, the 3D simulation designer will want to use programs such as Autodesk 3ds Max®, SolidWorks® or FreeForm® to create 
geometry, assign texturing, and position the elements of a scene. QuickHaptics makes it easy to work this way; both to add the “sense 
of touch” to existing scene elements and to design general interactions with event driven Callback functions.

In PickApples, the apples change color when they are touched. When the front Touch stylus button is pushed in order to move the 
apples around, they turn golden while they are being moved.

#include <QHHeadersGLUT.h>

static const int appleCount = 9;

char* modelFileNames[appleCount] = {

    “models/appleBasket/apple0.3ds”,

    “models/appleBasket/apple1.3ds”,

    “models/appleBasket/apple2.3ds”,

    “models/appleBasket/apple3.3ds”,

    “models/appleBasket/apple4.3ds”,

    “models/appleBasket/apple5.3ds”,

    “models/appleBasket/apple6.3ds”,

    “models/appleBasket/apple7.3ds”,

    “models/appleBasket/apple8.3ds”

};

HDstring redAppleTex (“models/appleBasket/redApple.jpg”);

HDstring greenAppleTex (“models/appleBasket/greenApple.jpg”);

HDstring goldenAppleTex (“models/appleBasket/goldenApple.jpg”);
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HDstring tempTextureState;

TriMesh* tempDroppedApple;

TriMesh* myApples[appleCount];

void Touch_cb(unsigned int ShapeID);

void Button1Down_cb(unsigned int ShapeID);

void Button1Up_cb(unsigned int ShapeID);

void main(int argc, char *argv[])

{

QHGLUT* DisplayObject = new QHGLUT(argc,argv);

DeviceSpace* OmniSpace = new DeviceSpace;           //Use the Default Touch Device

DisplayObject->tell(OmniSpace);

DisplayObject->setBackgroundColor(0.8,0.65,0.4);

// Create a new TriMesh object from 3DS geometry

TriMesh* Basket = new TriMesh(“models/appleBasket/bowl.3ds”);

Basket->setRotation(hduVector3Dd(1.0,0.0,0.0),45.0);

Basket->setTexture(“models/appleBasket/wood.jpg”);

Basket->setStiffness(0.9);

Basket->setFriction (0.7,0.5);

Basket->setUnDraggable();

DisplayObject->tell (Basket);

for (int i=0;i<appleCount;i++)

{

    myApples[i] = new TriMesh (modelFileNames[i]);

    myApples[i]->setTexture (redAppleTex);

    myApples[i]->setRotation(hduVector3Dd (1.0,0.0,0.0),45.0);

    myApples[i]->setStiffness (0.6);

    myApples[i]->setDamping (0.1);

    myApples[i]->setFriction (0.5,0.3);

    DisplayObject->tell (myApples[i]);

}

Text* instructionMsg = new Text (20.0, 

    “This example demonstrates Touch & Button Events”, 0.25, 0.9 );

instructionMsg->setShapeColor (0.9,0.9,0.0);

DisplayObject->tell (instructionMsg);

Cursor* OmniCursor = new Cursor;

DisplayObject->tell (OmniCursor);

for(int i=0;i<appleCount;i++)
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{

    OmniSpace->touchCallback ( Touch_cb, myApples[i] );

    OmniSpace->button1DownCallback ( Button1Down_cb, myApples[i] );

}

OmniSpace->button1UpCallback( Button1Up_cb );

//Set everything in motion

qhStart();

}

void Touch_cb(unsigned int ShapeID)

{

//Get a pointer to the object touched, return if NULL

TriMesh* touchedApple = TriMesh::searchTriMesh (ShapeID);

if (touchedApple==NULL)

    return;

HDstring texture = (HDstring) touchedApple->getTextureFilename ();

//Toggle the texture from Red to Green and back again

(texture == redAppleTex) ? texture = greenAppleTex : texture = redAppleTex;

touchedApple->setTexture(texture);

}

void Button1Down_cb(unsigned int ShapeID)

{

//Get a pointer to the object touched, return if NULL    

TriMesh* pickedApple = TriMesh::searchTriMesh(ShapeID);

if (pickedApple==NULL)

    return;

HDstring texture = (HDstring) pickedApple->getTextureFilename();

if (texture == redAppleTex || texture == greenAppleTex)

{

    //Save state for the Button1Up callback

    tempTextureState = texture;

    tempDroppedApple = pickedApple;

    texture = goldenAppleTex;

    pickedApple->setTexture(texture);

}

}

void Button1Up_cb(unsigned int ShapeID)

{
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if (tempDroppedApple==NULL)

    return;

//Restore Texture for the apple being dragged

tempDroppedApple->setTexture(tempTextureState);

}

Example 4 Output

A common geometric representation used in computer graphics is triangular or quadrilateral meshes in which the surface representation 
is organized by vertices, edges that connects pairs of vertices, and faces which are ordered lists of connected edges. Popular 
animation packages such as 3D Studio Max, SolidWorks or Alias|Wavefront can create models which can be then be easily loaded 
into a QuickHaptics scene using the TriMesh class. TriMesh contains parsers for OBJ, 3DS, STL and PLY formats. The world space 
positioning of the native geometry is preserved as the object is loaded. Once loaded, you can treat the 3-D model like any other 
Shape primitive. In this example, the Basket and Apples are tipped forwards with the setRotation() method. The program also uses 
setStiffness() and setFriction() to make the Basket feel different from the Apples.

Another important way in which the Basket is different from the Apples is that the Apples are draggable, while the Basket is not. In 
QuickHaptics, the draggable property makes the position of any Shape in the scene changeable by first touching the object with the 
front button pressed and then moving the Touch stylus to a new location. All Shapes are draggable by default. In PickApples, the Basket 
is made stationary with a call to setUnDraggable().
Inside of QuickHaptics, the draggable property is implemented as a Callback function. In general, using callbacks is a great way to 
specific behaviors when certain events occur. Callbacks are implemented as part of the DeviceSpace class and supported events 
include: touching an object, pushing the stylus buttons and moving the haptic interface point. 

A general graphics callback that is called just before every graphics frame is available through either of the two Display classes, 
QHWin32 or QHGLUT.
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In PickApples, three callbacks are used:

• A Touch callback is setup for each of the Apples with touchCallback (Touch_cb, myApples[i]). In this case the callback function, Touch_
cb, will be called with the Shape ID of the touched Apple when the haptic interface point contacts the Apple’s surface. In the example, the 
texture color for each of the Apples is toggled between red and green by Touch_cb.

• A Button1Down callback is also setup for each Apple. Since the Shape ID is passed in with button1DownCallback (Button1Down_cb, 
myApples[i]), the callback function will only be called if one of the Apples is being touched while the button is pressed. In the example, the 
Apple texture is changed to golden; and global state is saved for which Apple has been moved and it’s current texture color.

• Lastly, a general callback is setup for the Button1Up callback with button1UpCallback (Button1Up_cb). Button1Up_cb simply resets the 
texture color of the moving Apple to its’ previous state.

Before leaving the topic of TriMesh Shapes, special mention should be made of error handling; what happens if the program is 
pointing to the wrong geometry files or the file names are wrong? Rather than returning a NULL pointer or throwing an exception (and 
then requiring the developer to handle each such case), QuickHaptics takes a “fail gracefully” approach to such problems. Missing 
geometry is substituted with the Utah Teapot, but all other graphics and haptics material properties are properly passed along. Similarly 
if a texture file can not be loaded, the texture map is substituted with an appropriate error message and displayed on the specified 
geometry. The figure shows the PickApples example again, but this time without the basket and apple files; the teapots have been 
dragged around to create the “sea” of teapots shown.

EXAMPLE 5—MULTIPLE WINDOWS AND VIEWS (MULTIPLEWINDOWS)
This example describes how to create multiple display windows each with different camera views to show a Cow model from the front, 
top and right—all at the same time.

#include <QHHeadersWin32.h>

int WINAPI WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance,

   LPSTR lpCmdLine, int nCmdShow ) 

{

QHWin32* DisplayObject1 = new QHWin32;   //create a display window 1

DisplayObject1->hapticWindow (true);   //Haptics are with respect to this window

DisplayObject1->setWindowTitle (“Front View”);

QHWin32* DisplayObject2 = new QHWin32;   //create display window 2

DisplayObject2->hapticWindow (false);   //Disable haptics in this window

DisplayObject2->setWindowTitle (“Right View”);
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QHWin32* DisplayObject3 = new QHWin32;   //create display window 3

DisplayObject3->hapticWindow (false);   //Disable Haptics in this window

DisplayObject3->setWindowTitle (“Top View”);

   

DeviceSpace* OmniSpace = new DeviceSpace;  //Use default Touch

DisplayObject1->tell (OmniSpace);

//Load a cow model

TriMesh* Cow = new TriMesh (“models/cow.3ds”);

Cow->setFriction ();

DisplayObject1->tell (Cow);

//Create a new cursor

Cursor* OmniCursor = new Cursor;

DisplayObject1->tell (OmniCursor);

float FOV1, FOV2, FOV3;

float NearPlane1, NearPlane2, NearPlane3;

float FarPlane1, FarPlane2, FarPlane3;

hduVector3Dd Eye1, Eye2, Eye3;

hduVector3Dd LookAt1, LookAt2, LookAt3;

hduVector3Dd UpVector1, UpVector2, UpVector3;

//Calculate default camera based on Cow bounding box

DisplayObject1->setDefaultCamera ();

DisplayObject1->getCamera (&FOV1,&NearPlane1,&FarPlane1,&Eye1,&LookAt1,&UpVector1);

//First, set the Parameters for View2 and View3 to be the same as View1

FOV3 = FOV2 = FOV1;

NearPlane3 = NearPlane2 = NearPlane1;

FarPlane3 = FarPlane2 = FarPlane1;

Eye3 = Eye2 = Eye1;

LookAt3 = LookAt2 = LookAt1;

UpVector2 = UpVector1;

UpVector3 = UpVector1;

Eye2.set (Eye1[2],LookAt2[1],LookAt2[2]);  //Right View: +X

Eye3.set (LookAt2[0],Eye1[2],LookAt2[2]);  //Top View: +Y

UpVector3.set (0.0,0.0,-1.0);   //Flip Top View: left for right

DisplayObject2->setCamera (FOV2, NearPlane2, FarPlane2, Eye2, LookAt2, UpVector2);

DisplayObject3->setCamera (FOV3, NearPlane3, FarPlane3, Eye3, LookAt3, UpVector3);

qhStart (); //Set everything in motion

}
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The example uses the QHWin32 constructor to create three windows: DisplayObject1, DisplayObject2, and DisplayObject3. The three 
windows display the front, right, and top views of the cow model, respectively.

Example 5 Output

NOTE: When you first run the program, the three windows will initially be superimposed on top of each other. Use the mouse 
to move and separate them.

Enabling Haptics in a Window
When using haptics in a multiple window application, it is important to note that one and only one Display can be haptically enabled at 
a time. To allow simultaneous haptic capability in more than one window would cause ambiguity in terms of how forces are fed back to 
the user. For example, in the front view, forces would be felt directly in front of the Cow object. However, in the right view, those same 
forces would be felt on the left side of the object. 

In this example, the DisplayObject1 window is haptically enabled by setting the hapticWindow function to true for that Display. For 
the other windows, hapticWindow is set to false. 

NOTE: Although beyond the scope of this example, you can use QuickHaptics callbacks at program runtime to select any 
single window to be haptically enabled. But again, do not enable multiple haptic windows simultaneously.

Assigning Window Titles
By default, each window has the same title based on whether it is a Win32 API or GLUT Display. To differentiate between the windows, 
this example uses the setWindowTitle function to display an appropriate title at the top of each window, one for each view.

Setting Camera Views
After defining the windows and assigning titles, the code performs operations similar to previous examples: specifying the haptic 
device space, loading the 3-D model, and declaring a haptic cursor. 

Note that you only have to use the tell function to register each object or device in one window, DisplayObject1; the other windows 
will be rendered according to their specified camera view of the Cow model when the program is run. Within both QuickHaptics and 
the OpenGL rendering context, there is actually a single display list that is shared by all the DisplayObjects. We use DisplayObject1 
to make the assignment by convention.

In the DisplayObject1 window, the default OpenGL camera view is assumed for the scene. However, in the case of the 
DisplayObject2 and DisplayObject3 windows, we want to render a right view and top view of the cow, respectively. 
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To get a right and top view for the other windows, the program does the following:

1. Calls the setDefaultCamera () function to set the camera parameters to the default view for the DisplayObject1 window. This 
creates the default front view of the cow.

2. Calls the getCamera method to read back the default camera parameters for DisplayObject1, described in “Camera” on page 
9. These parameters are:

• FOV1—Field of View. This is defined as 22.5 degrees between each endpoint of the front edge of the global bounding box that en-
compasses all objects in the scene and an imaginary line drawn from the location (or eyepoint) of the camera to the midpoint of the 
edge.

• NearPlane1 and FarPlane1—Positions of the front and rear clipping planes, respectively.
• Eye1—Worldspace position of the camera eyepoint
• LookAt1—Worldspace position that the camera is looking at
• UpVector1—Direction that is considered to be “up” with respect to the camera

3. Set all parameter values for DisplayObject2 and DisplayObject3 to be the same as their corresponding parameters in 
DisplayObject1. For example, FOV3=FOV2=FOV1; NearPlane3=NearPlane2=NearPlane1; and so on. This ensures that the 
different camera views start with the same parameter values as DisplayObject1.

4. For DisplayObject2, shift the camera eyepoint to the right of the view in DisplayObject1 using the syntax Eye2.set(X, Y, Z). The 
eyepoint for the camera in DisplayObject1 is along the Z-axis. Eye2.set uses the same distance value but instead moves it to the 
X-axis, causing the camera to shift to the right of the view in DisplayObject1. The LookAt values for the Y and Z axes remain the 
same as in DisplayObject1. The resulting code is: Eye2.set(Eye1[2],LookAt2[1],LookAt2[2]).

5. For DisplayObject3, shift the camera eyepoint above the view in DisplayObject1 using the function Eye3.set(X, Y, Z). 
Eye3.set uses the same distance but instead moves it along the Y-axis, causing the camera to shift above the view in 
DisplayObject1. The LookAt values for the X and Z axes remain the same as in DisplayObject1. The resulting code is: Eye3.
set(LookAt2[0],Eye1[2],LookAt2[2]).

Because the eyepoint has now moved above the cow, the program also needs to re-establish the “up” direction for the camera in 
DisplayObject3, using the UpVector3.set(X, Y, Z) function. In this case, the “up” direction has now shifted to the Z-axis, so the value 
is assigned as UpVector3.set(0.0, 0.0, -1.0).

6. Now that the program has set the Eye and LookAt value for DisplayObject2 and DisplayObject3 and the UpVector values 
for DisplayObject3, the method setCamera is used to apply those values to the camera for each Display. The parameters for 
setCamera are the same as for getCamera, except for the expected use of the address operator (&).

EXAMPLE 6—USING DEFORMATION PROPERTIES (SPONGYCOW)
There are many parallels that can be drawn between calculating collision forces for Haptic Rendering and force calculation used for 
dynamic simulation of elastic objects. The Touch haptic interface point can be used to apply a “strain” to a TriMesh Shape; a simple 
physics model is applied to calculate how the local change in shape propagates through the rest of the elastic object; and a reaction 
force is felt by the user back through the Touch. 

This example illustrates the use of some built-in methods within the TriMesh class that apply deformation properties to 3D models.

NOTE: Deformation functionality is currently in beta form in the QuickHaptics micro API and is still under development.
#include 

void MotionCallback(unsigned int ShapeID);

void GraphicsCallback(void);

int WINAPI WinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance,

   LPSTR lpCmdLine, int nCmdShow ) 

{

QHWin32* DisplayObject = new QHWin32;    //Create a display window

DeviceSpace* OmniSpace = new DeviceSpace;

DisplayObject->tell(OmniSpace);

TriMesh* Cow = new TriMesh (“models/cow.obj”);   //Load a cow model

Cow->setName (“Cow”);      //Give it a name 

Cow->setTexture (“models/cow.jpg”);    //Apply a texture to the model
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Cow->dynamic (true)      //Make the model deformable

Cow->setGravity (false);      //Turn off gravity

// Physics Parameters to play around with - Spring stiffness, Damping

// and Mass

Cow->setSpringStiffness(0.2);

Cow->setSpringDamping(0.05);

Cow->setMass(0.01);

DisplayObject->tell(Cow);      //Tell QuickHaptics that cow exists

Cursor* OmniCursor = new Cursor;     //Declare a new cursor

OmniCursor->setname (“OmniCursor”) 

DisplayObject->tell (OmniCursor);

// Setup graphics and haptic device motion callbacks

DisplayObject->preDrawCallback (GraphicsCallback);

OmniSpace->motionCallback (MotionCallback, Cow);

//Set everything in motion

qhStart();

}

void GraphicsCallback(void)

{

//Calculate the deformation timestep for the Cow in the Graphics loop

TriMesh* CowPointer = TriMesh::searchTriMesh(“Cow”);

CowPointer->deformationFunction();

}

void MotionCallback (unsigned int ShapeID)

{

TriMesh* CowPointer = TriMesh::searchTriMesh (“Cow”);

Cursor* OmniCursorPointer = Cursor::searchCursor (“OmniCursor”);

DeviceSpace* SpacePointer = DeviceSpace::searchSpace (“Default Device”);

//Get the current position of the haptic device and the current force being exerted

//by the haptic device

hduVector3Dd CPosition = OmniCursorPointer->getPosition( );

hduVector3Dd Force = SpacePointer->getForce ();

//Calculate the deformation because of the force at the cursor position

CowPointer->deformationFunction(CPosition,Force);

}
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Example 6 Output (Deformation at Cursor Position)

In this example, when a user touches the 3D cow model, the surface of the cow bends or deforms inward at the haptic cursor position. 
When the force is removed, the surface of the cow flexes back and forth, but returns eventually to its original position. You can apply 
deformation properties only to TriMesh shapes.

As with similar examples in this chapter, the main program loads the 3D model and declares the haptic cursor. Because the cow is also 
changing shape, the program sets the dynamic property to true for the cow model (Cow->dynamic(true)). If this property is not set to 
true for the model, the program will still make the deformation calculations in GraphicsCallback, but it will not render them graphically.

The next four lines are used to set the specific properties for the physics simulation. The edges and vertices of TriMesh shapes are 
interpreted as a simple mass-spring network; that is the triangle vertices (also known as particles) are interconnected by virtual springs 
along the triangle edges. To remove the effect of rigid body translations, an additional set of springs is used to tie the vertices down to 
their initial rest positions. The parameters for all the springs is the same and supply the standard force given by: Fspring = kx - Bv. 

setSpringStiffness sets the strength of “springyness” between particles (k); a high value means that the spring bond between each 
particle is very strong. setSpringDamping sets how fast the damping factor (B) inhibits the bounciness or rebound effect of a spring. 
A higher value would lessen the amount of flexing that occurs after you touch and then release the haptic cursor from the surface of 
the model. setMass sets the mass of each particle in the model. If the mass of the particles is set high and setSpringStiffness is 
unchanged, the springs between particles will have more difficulty pulling the particles. 

setGravity, when set to true, enables gravitational force for all the particles in the TriMesh model. If setMass is then set high and 
setSpringStiffness is set low, it is equivalent to a heavy weight attached to an anchor point by a very weak spring. The weight will 
fall toward the bottom of the window until the weak spring finally causes it to overcome gravity and rebound to its original position. In 
QuickHaptics, gravity points along the negative Z-axis, (0, -9.8, 0).

The main SpongyCow program invokes two callback functions: GraphicsCallback and MotionCallback.

GraphicsCallback uses searchTrimesh to find the “Cow” object and returns a pointer to the local variable CowPointer. It then uses 
the default deformationFunction() to calculate the current amount of displacement on the surface of the elastic model and renders it 
graphically. Our deformation function uses Euler integration with a time step based on the amount of elapsed “real time” between calls. 
Note that the surface may remain deformed for some time after the user touches it haptically until it returns to its original undeformed 
state. GraphicsCallback ensures that the state of deformation is rendered accurately at any point in time, regardless of whether the 
user is touching the cow or not.

In contrast, MotionCallback is only invoked when the haptic cursor contacts the surface of the model. It uses the same search function 
to find the “Cow” object, haptic cursor (“OmniCursor”), and default haptic device (“DefaultDevice”) and returns pointers to the local 
variables: CowPointer, OmniCursorPointer, and SpacePointer respectively. SpacePointer is a pointer to the default haptic device, which 
contains the data on the forces it is currently rendering. The getPosition() function is used to retrieve the current position of the haptic 
cursor, and the getForce() function is used to retrieve the current forces exerted by the haptic device. The data is assigned to variables 
CPosition and Force, respectively. Finally deformationFunction is called with parameters CPosition and Force, to calculate the 
deformation caused by applying the force at the haptic cursor position. Again, Euler integration is performed, this time with a constant 
time step of 1/30 second.



3D Systems, Inc. 34

EXAMPLE 7—DEFINING CUSTOM FORCE LAWS (SKULLCOULOMBFORCE)
The pyramid used to introduce OpenHaptics 3.3.0 (see page 7) shows that besides encapsulating an entire set of haptics 
functionality, QuickHaptics can be used in conjunction with the existing HL API and HD API with which advanced haptics programmers 
will already be familiar. As an illustration, this example shows how to override the default “shape rendering” force laws in the 
QuickHaptics micro API and create a scene that uses custom forces implemented in the HD/HL servo loop (see “Custom Effects” on 
page 125). 

Due to the length of this program, line numbers have been added to the code for reference. The inspiration for SkullCoulombForce 
comes from the HD graphics example, ColumbField, in which the red sphere at the Touch haptic interface point is attracted by an 
“inverse square” force law to the stationary charge at the origin of the cyan sphere. Here, in SkullCoulombForce, the red sphere is 
attracted by the same “inverse square” force to the origin of the orbiting Skull model.

NOTE: This example requires advanced knowledge of HDAPI/HLAPI and the servo loop thread, in addition to QuickHaptics 
micro API. For more information on HD API and HL API programming, see the relevant chapters later in this guide.
1. #include <QHHeadersWin32.h>

2. 

3. #include <HDU/hduMath.h>

4. #include <HDU/hduMatrix.h>

5. 

6. class DataTransportClass //This class passes data into the ServoLoop thread

7. {

8. public:

9. TriMesh* Model;            //Trimesh pointer to hold Skull

10. Sphere* cursorSphere;     //Sphere pointer for haptic interface point

11. Cylinder* forceArrow;    //To show magnitude and direction of force

12. Cone* forceArrowTip;     //Tip that points in the force direction

13. Cursor* deviceCursor;     //Pointer to hold the cursor data

14. Text* descriptionText;

15. };

16. 

17. //Radius when the inverse square law changes to a spring force law.

18. double chargeRadius = 3;

19. 

20. //This matrix contains the World Space to DeviceSpace Transformation

21. hduMatrix WorldToDevice;

22. 

23. hduVector3Dd forceVec;   //This variable contains the force vector.

24. 

25. //QuickHaptics Graphics callback routine

26. void GraphicsCallback (void);

27. 

28. //Functions that define HL Custom Force servo loop callback

29. void HLCALLBACK computeForceCB (HDdouble force[3], HLcache *cache, void *userdata);

30. void HLCALLBACK startEffectCB (HLcache *cache, void *userdata);

31. void HLCALLBACK stopEffectCB (HLcache *cache, void *userdata);

32. 

33. //Compute inverse square forces between the Skull and the particle

34. hduVector3Dd forceField (hduVector3Dd Pos1, hduVector3Dd Pos2, 

35.       HDdouble Multiplier, HLdouble Radius);

36. 
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37. int WINAPI WinMain ( HINSTANCE hInstance, HINSTANCE hPrevInstance,

38.       LPSTR lpCmdLine, int nCmdShow ) 

39. {

40. QHWin32* DisplayObject = new QHWin32; //create a display window

41. DeviceSpace* OmniSpace = new DeviceSpace;

42. DisplayObject->setName (“Coulomb Field Demo”);

43. DisplayObject->tell(OmniSpace);

44. 

45. //Initialize an Object to pass data into the servoloop callback

46. DataTransportClass dataObject;

47. 

48. //Sphere for the haptic interface point

49. dataObject.cursorSphere = new Sphere (chargeRadius,15);

50. dataObject.cursorSphere-setName (“cursorSphere”);

51. dataObject.cursorSphere->setShapeColor (0.8,0.2,0.2);

52. 

53. //Make the Sphere haptically invisible or the proxy will keep colliding

54. //with the sphere

55. dataObject.cursorSphere->setHapticVisibility (false);

56. DisplayObject->tell (dataObject.cursorSphere);

57. 

58. 

59. //Cylinder for the force arrow

60. dataObject.forceArrow = new Cylinder (chargeRadius/4,1,15);

61. dataObject.forceArrow->setShapeColor (0.2,0.7,0.2);

62. dataObject.forceArrow->setHapticVisibility (false);

63. dataObject.forceArrow->setName (“forceArrow”);

64. DisplayObject->tell (dataObject.forceArrow);

65. 

66. //Cone for the force arrow tip

67. dataObject.forceArrowTip = new Cone (2,4,15);

68. dataObject.forceArrowTip->setShapeColor (1.0,0.0,0.0);

69. dataObject.forceArrowTip->setHapticVisibility (false);

70. dataObject.forceArrowTip->setName (“forceArrowTip”);

71. DisplayObject->tell (dataObject.forceArrowTip);

72. 

73. //Load a Skull Model for the attraction force particle

74. dataObject.Model = new TriMesh (“models/skull.obj”);

75. dataObject.Model->setName (“Skull”);

76. dataObject.Model->setHapticVisibility (false);

77. dataObject.Model->setShapeColor (0.35,0.15,0.75);

78. 

79. // make the skull smaller, about the same size as the sphere

80. dataObject.Model->setScale( .2 );

81. DisplayObject->tell(dataObject.Model);

82. 
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83. //Create a new cursor and make it invisible so that the Red Sphere can be

84. //drawn in its place

85. dataObject.deviceCursor= new Cursor ();

86. dataObject.deviceCursor->setName (“devCursor”);

87. dataObject.deviceCursor->setCursorGraphicallyVisible (false);

88. DisplayObject->tell (dataObject.deviceCursor);

89. 

90. //Text description of this example

91. dataObject.descriptionText = new Text(20.0,

92.     “This example demonstrates Coulomb Forces between two dynamic charges”,

93.     0.1,0.9);

94. 

95. dataObject.descriptionText->setShapeColor(0.7,0.0,0.4);

96. DisplayObject->tell(dataObject.descriptionText);

97. 

98. //Setup the QuickHaptics graphics callback and the HL Custom Force callback

99. DisplayObject->preDrawCallback(GraphicsCallback);

100. 

101. OmniSpace->startServoLoopCallback(startEffectCB, computeForceCB,

102.     stopEffectCB,&dataObject);

103. 

104. 

105. //

106. // Change the default camera, first set the Default Camera, 

107. // then read back the fov, eye point etc.

108. //

109. DisplayObject->setDefaultCamera();

110. 

111. float fov, nearplane, farplane;

112. hduVector3Dd eyepoint, lookat, up;

113. DisplayObject->getCamera(&fov, &nearplane, &farplane, &eyepoint, &lookat, &up);

114. 

115. eyepoint[2] += 100.;      // pull back by 100

116. nearplane += 80.;         // recenter the haptic workspace (adjust by 20) 

117. farplane += 80.;

118. DisplayObject->setCamera( fov+15., nearplane, farplane,eyepoint, lookat, up );

119. 

120. 

121. //Set everything in motion

122. qhStart();

123. }

124. 

125. 

126. //

127. // The QuickHaptics Graphics Callback runs in the application “client thread”

128. // (qhStart) and sets the transformations for the Red Sphere and Green Line of
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129. // the Cursor. Also, this callback sets the WorldToDevice matrix for later use

130. // in the HL Custom Force callback which runs in the HD servo loop.

131. //

132. void GraphicsCallback(void)

133. {

134. //Get Pointers to all the QuickHaptics data structures, return if any

135. //are missing

136. QHWin32* localDisplayObject = QHWin32::searchWindow (“Coulomb Field Demo”);

137. Cursor* localDeviceCursor = Cursor::searchCursor (“devCursor”);

138. Cylinder* localForceArrow = Cylinder::searchCylinder (“forceArrow”);

139. Cone* localForceArrowTip = Cone::searchCone (“forceArrowTip”);

140. Sphere* localCursorSphere = Sphere::searchSphere (“cursorSphere”);

141. 

142. if( localDisplayObject == NULL || localDeviceCursor == NULL 

143.     || localForceArrow == NULL || localCursorSphere == NULL)

144.     return;

145. 

146. 

147. hduMatrix CylinderTransform;

148. hduVector3Dd localCursorPosition;

149. hduVector3Dd DirectionVecX;

150. hduVector3Dd PointOnPlane;

151. hduVector3Dd DirectionVecY;

152. hduVector3Dd DirectionVecZ;

153. 

154. //Compute the world to device transform

155. WorldToDevice = localDisplayObject->getWorldToDeviceTransform();

156. 

157. // Set transform for Red Sphere based on the cursor position 

158. // in World Space

159. localCursorPosition = localDeviceCursor->getPosition();

160. hduVector3Dd localCursorSpherePos = localCursorSphere->getTranslation();

161. 

162. localCursorSphere->setTranslation(-localCursorSpherePos); //reset position

163. localCursorSphere->setTranslation(localCursorPosition);

164.     

165. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

166. //Calculate transform of the green cylinder to point along the force direction

167. //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

168. hduMatrix DeviceToWorld = WorldToDevice.getInverse();

169. HDdouble ForceMagnitude = forceVec.magnitude();

170. DeviceToWorld[3][0] = 0.0;

171. DeviceToWorld[3][1] = 0.0;

172. DeviceToWorld[3][2] = 0.0;

173. DirectionVecX = forceVec * DeviceToWorld;

174. DirectionVecX.normalize();
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175. PointOnPlane.set(0.0,0.0,(DirectionVecX[0]*localCursorPosition[0] 

176.     + DirectionVecX[1]*localCursorPosition[1] 

177.     + DirectionVecX[2]*localCursorPosition[2])/DirectionVecX[2]);

178. 

179. DirectionVecY = PointOnPlane  - localCursorPosition;

180. DirectionVecY.normalize();

181. 

182. DirectionVecZ = -DirectionVecY.crossProduct(DirectionVecX);

183. 

184. CylinderTransform[0][0] = DirectionVecZ[0]; 

185. CylinderTransform[0][1] = DirectionVecZ[1]; 

186. CylinderTransform[0][2] = DirectionVecZ[2]; 

187. CylinderTransform[0][3] = 0.0;

188. 

189. CylinderTransform[1][0] = DirectionVecX[0];

190. CylinderTransform[1][1] = DirectionVecX[1]; 

191. CylinderTransform[1][2] = DirectionVecX[2]; 

192. CylinderTransform[1][3] = 0.0;

193. 

194. CylinderTransform[2][0] = DirectionVecY[0]; 

195. CylinderTransform[2][1] = DirectionVecY[1]; 

196. CylinderTransform[2][2] = DirectionVecY[2]; 

197. CylinderTransform[2][3] = 0.0;

198. 

199. CylinderTransform[3][0] = 0.0;

200. CylinderTransform[3][1] = 0.0;

201. CylinderTransform[3][2] = 0.0;

202. CylinderTransform[3][3] = 1.0;

203. CylinderTransform = CylinderTransform *

204.     hduMatrix::createTranslation(localCursorPosition[0], localCursorPosition[1],

205.         localCursorPosition[2]);

206. 

207. localForceArrow->update(chargeRadius/4, ForceMagnitude*50, 15);

208. localForceArrow->setTransform(CylinderTransform);

209. 

210. hduMatrix ConeTransform = CylinderTransform *

211.     hduMatrix::createTranslation(DirectionVecX[0] * ForceMagnitude * 50,

212.         DirectionVecX[1] * ForceMagnitude*50,

213.         DirectionVecX[2] * ForceMagnitude*50 );

214. 

215. localForceArrowTip->setTransform(ConeTransform);

216. }

217. // GraphicsCallback

218. 

219. 

220. /*******************************************************************************
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221.  Servo loop thread callback.  Computes a force effect. This callback defines 

222.  the motion of the purple skull and calculates the force based on the

223.  “real-time” Proxy position in Device space.

224. *********************************************************************************/

225. static int counter1 = 0;

226. 

227. void HLCALLBACK computeForceCB(HDdouble force[3], HLcache *cache, void *userdata)

228. {

229. //Typecast the pointer passed in appropriately

230. DataTransportClass *localdataObject = (DataTransportClass *)userdata;

231. 

232. //Position of the skull (Moving sphere) in Device Space.

233. hduVector3Dd skullPositionDS;

234. 

235. hduVector3Dd proxyPosition;    //Position of the proxy in device space

236. HDdouble instRate = 0.0;

237. HDdouble deltaT = 0.0;

238. static float counter = 0.0;

239. float degInRad = 0.0;

240. 

241. // Get the time delta since the last update.

242. hdGetDoublev(HD_INSTANTANEOUS_UPDATE_RATE, &instRate);

243. deltaT = 1.0 / instRate;

244. counter += deltaT;

245. degInRad = counter*20*3.14159/180;

246. 

247. //Move the skull around in a circle. First reset translation to zero

248. hduVector3Dd ModelPos = localdataObject->Model->getTranslation();

249. localdataObject->Model->setTranslation(-ModelPos);

250. localdataObject->Model->setTranslation(

251.     cos(degInRad)*64.0, sin(degInRad)*64.0, 5.0);

252. 

253. //Convert the position of the Skull from world space to device space

254. WorldToDevice.multVecMatrix(

255.     localdataObject->Model->getTranslation(), skullPositionDS);

256. 

257. //Get the position of the proxy in Device Coordinates (All HL commands 

258. //in the servo loop callback fetch values in device coordinates)

259. hlCacheGetDoublev(cache, HL_PROXY_POSITION, proxyPosition);

260. 

261. //Calculate the force

262. forceVec = forceField(proxyPosition, skullPositionDS, 40.0, 5.0);

263. 

264. //Make the force start after 2 seconds of program start. This is because the 

265. //servo loop thread executes before the graphics thread. Hence global variables

266. //set in the graphics thread will not be valid for sometime in the begining of
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267. //the program

268. counter1++;

269. 

270. if (counter1 > 2000) 

271. {

272.     force[0] = forceVec[0];

273.     force[1] = forceVec[1];

274.     force[2] = forceVec[2];

275.     counter1 = 2001;

276. }

277. else

278. {

279.     force[0] = 0.0;

280.     force[1] = 0.0;

281.     force[2] = 0.0;

282. }

283. }

284. 

285. 

286. /*****************************************************************************

287.  Servo loop thread callback called when the effect is started.

288. ******************************************************************************/

289. void HLCALLBACK startEffectCB(HLcache *cache, void *userdata)

290. {

291. counter1 = 0;

292. printf(“Custom effect started\n”);

293. }

294. 

295. 

296. /******************************************************************************

297.  Servo loop thread callback called when the effect is stopped.

298. ******************************************************************************/

299. void HLCALLBACK stopEffectCB(HLcache *cache, void *userdata)

300. {

301. printf(“Custom effect stopped\n”);

302. }

303. 

304. 

305. /*******************************************************************************

306.  Given the position of the two charges in space,

307.  calculates the (modified) coulomb force.

308. *******************************************************************************/

309. hduVector3Dd forceField(hduVector3Dd Pos1, hduVector3Dd Pos2,

310.     HDdouble Multiplier, HLdouble Radius)

311. {

312. hduVector3Dd diffVec = Pos2 - Pos1 ; //Find the difference in position
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313. double dist = 0.0;

314. hduVector3Dd forceVec(0,0,0);

315. 

316. HDdouble nominalMaxContinuousForce;

317. 

318. //Find the max continuous force that the device is capable of

319. hdGetDoublev(HD_NOMINAL_MAX_CONTINUOUS_FORCE, &nominalMaxContinuousForce);

320. 

321. dist = diffVec.magnitude();

322. 

323. //Use Spring force when the model and cursor are within a ‘sphere of influence’

324. if (dist < Radius*2.0) 

325. {

326.     diffVec.normalize();

327.     forceVec =  (Multiplier) * diffVec * dist /(4.0 * Radius * Radius);

328. }

329. else //Inverse square attraction

330. {

331.     forceVec = Multiplier * diffVec/(dist*dist);

332. }

333. 

334. 

335. //Limit force calculated to Max continuouis. This is very important because

336. //force values exceeding this value can damage the device motors.

337. for (int i=0;i<3;i++)

338. {

339.     if(forceVec[i]>nominalMaxContinuousForce)

340.         forceVec[i] = nominalMaxContinuousForce;

341. 

342.     if(forceVec[i]<-nominalMaxContinuousForce)

343.         forceVec[i] = -nominalMaxContinuousForce;

344. }

345. 

346. return forceVec;

347. }
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Example 7 Output (Coulomb Force)

The QuickHaptics micro API provides “haptic shape rendering” where the Touch lets the user feel geometric contours, and the forces 
are directly proportional to the depth of penetration of the surface of an object. There is no provision in the QuickHaptics micro API or 
HL API to modify the algorithm performed in the 1 KHz haptic device servo loop to change the details of the shape rendering (aside 
from setting material properties). However, you can use HL Custom Force Effect functions in combination with the QuickHaptics micro 
API to create your own force model. 

In the SkullCoulombForce example, a user-defined “inverse square” Coulomb force model is implemented. The red sphere is attracted 
to the center of the Skull and the strength of the force increases as the sphere approaches the Skull. As long as the sphere and Skull 
are at least a specified distance apart, the force obeys the inverse square law, where Coulombic force is inversely proportional to the 
square of the distance between the haptic cursor (the sphere) and the point that is exerting the force (the center of the Skull). However, 
if the two objects approach each other closer than this specified distance, the force law changes to a simple spring and the two objects 
will overlap each other. This modification is done for stability. Forces that are too large can cause haptic devices to exhibit unpredictable 
behavior.

The cylinder attached to the sphere indicates the magnitude of the attraction, growing longer as the sphere gets closer to the Skull. It 
also always points toward the center of the skull. Finally, the Skull moves around the world space in a circle.



3D Systems, Inc. 43

Declaring and Creating Objects
In lines 7-15, all of the shapes and objects in the scene are declared as members of the DataTransportClass class. Within the main 
program, dataObject is declared as a class of DataTransportClass on line 46. In lines 49-88, dataObject is assigned pointers to data 
for each object. The reason for using the dataObject class is to serve as a data container for the startServoLoopCallback function, 
which is described in more detail in the subsection “dataobject Pointer” on page 44.

cursorSphere is the shape that will become the haptic cursor later in the program. The radius, resolution, and color of the sphere are 
set in lines 49-56. chargeRadius is a variable that holds the value of the sphere’s radius set in line 18. By using the setName function 
to name the Shape “cursorSphere”, you can search for and return a pointer to that object within the other callback functions, with the 
exception of startServoLoopCallback. This callback is described in more detail in the subsection “startServoLoopCallback Function” 
on page 43. The program uses setName to name each of the other QuickHaptics objects, as well.

The sphere is rendered haptically invisible. If by mistake you set the sphere to be haptically visible, the sphere would always bump into 
a surface that moves along with it. That bump may oppose the sphere’s motion in certain directions, imparting an unnatural feel to the 
sphere’s role as a haptic cursor. 

The setHapticVisibility function, when set to false, renders the Sphere invisible to the haptic device (the user cannot “feel” it) but it is 
still graphically visible. This function can be used with any Shapes as well.

forcearrow is the cylinder on the sphere that indicates the magnitude of attraction and always points toward the center of the Skull. 
Its radius, color, and other properties are set in lines 60-64. Like the sphere, it is rendered haptically invisible. Its radius is always one 
quarter of the sphere’s radius (chargeRadius/4). 

Similarly, in lines 74-88, objects are created, named, and properties are set for the TriMesh (Skull) and the default haptic cursor. 
Because the red sphere will assume the role of the cursor later in the program, the cursor is made graphically invisible.

As in previous examples, you must use the tell function to register the existence of these objects with QuickHaptics.

GraphicsCallback Function
The GraphicsCallback function (lines 132-217) operates within the context of the 30 Hz QuickHaptics graphics loop. It performs 
several functions:

• Uses the QuickHaptics micro API search functions to return pointers to the window, cursor, cylinder, and sphere objects.

• Finds the WorldToDevice transformation matrix, which is used in the computeForceCB callback function within the servo loop to convert 
world space coordinates to device space coordinates (see “computeForceCB Function” on page 44 for more details).

Contains the CylinderTransform matrix. Although detailed discussion of this matrix is beyond the scope of this guide, this matrix is used 
to calculate the values needed to get the forceArrow (cylinder) object that is attached to the sphere to always point towards the center 
of the Skull.

Line 159 (Get World Coordinates for Haptic Cursor):

localCursorPosition = localDeviceCursor->getPosition ();

getPosition () is a QuickHaptics micro API function that continually reads the position of the specified parameter (in this case, the 
haptic interface point) within the graphics loop. The cursor position is stored in localCursorPosition in world space coordinates.

Line 163 (Copy Cursor World Coordinates to Sphere):

localCursorSphere->setTranslation (localCursorPosition);

Because the sphere will assume the role of the haptic cursor, this line assigns the “absolute” world space coordinates in 
localCursorPosition to the Sphere. The Sphere in effect replaces the cursor, which has been made graphically invisible.

Note that before the cursor position is applied, the localCursorSphere translation is first reset to the origin with the two lines:

hduVector3Dd localCursorSpherePos =

    localCursorSphere->getTranslation();

localCursorSphere->setTranslation (-localCursorSpherePos);

startServoLoopCallback Function
The startServoLoopCallback function on line 101 is the crux of this program and defines the elements needed to implement a HL 
Custom Force Effect. It takes as its parameters three functions pointers, plus the dataObject that has been setup in the main program:

• startEffectCB

• computeForceCB

• stopEffectCB

• dataObject
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dataobject Pointer
As described in “Declaring and Creating Objects” on page 43, dataObject is a pointer to the DataTransportClass class. The program 
passes this parameter to the startServoLoopCallback function because the callback functions, when invoked, will need to access all 
of the contained information. 

You may be wondering why the callback functions passed to startServoLoopCallback cannot simply access the data types by using 
the QuickHaptics micro API search functions to find a pointer to each object by name, as was done in previous examples in this 
chapter. The reason is because the servo and graphics loops run in different threads and are not synchronized. Since the timing of 
each loop is different, any name search within the servo loop can cause an error (although it will not cause an error in the graphics 
loop). The best way to make this example thread safe is by directly passing a pointer to the DataTransportClass class into the 
startServoLoopCallback method.

startEffectCB and stopEffectCB Functions
startEffectCB is invoked only once when the servo loop is started and stopEffectCB is called once when exiting the loop. Bracketed 
between these two callbacks, computeForceCB is called repeatedly at the 1khz HD servo loop rate to set the Skull position and to 
calculate the force effects. 

If the servo loop shuts down due to a velocity error or other type of error, “junk” values may be left behind. When the loop starts up 
again, these initial values may put the haptic device in an unsafe state where it is trying to apply or feedback excessive forces. The 
main purpose of startEffectCB (lines 286-293) is to ensure that unsafe values are not sent to the haptic device at the start of the loop. 

In this case, we merely reset counter1 = 0; so that forces are again eased in by the computeForceCB function. See the next section 
for a more complete description.

computeForceCB Function
This callback (lines 220-283) takes three HL parameters from OpenHaptics:

• HDdouble force[3]

• HLcache *cache

• void *userdata
force represents the current force values at the point of haptic contact that are calculated by the HL collision thread in OpenHaptics.

*cache is a pointer to the previous stored forces and other OpenHaptics property values just before the current frame of the servo loop.

*userdata is a void pointer that points to any new data that the user wants to pass to OpenHaptics via this callback. In the case of the 
SkullCoulombForce example, this data is the new Coulomb force values that will override the force laws assumed by the QuickHaptics 
micro API “shape rendering” functions.

In essence, this callback reads the current force values, modifies them using the values pointed to by void *userdata, and sends out the 
new forces to the haptic device.

Line 230 (Typecast *userdata):

DataTransportClass *localdataObject = (DataTransportClass *)userdata;

Note that void *userdata is a generic pointer and does not specify a particular data type. Because the system must know specific data 
types in order to allocate memory and apply appropriate offsets to those objects, a typecast must be performed.

Line 254 (Transform Skull world coordinates to device space coordinates):

WorldToDevice.multVecMatrix(

    localdataObject->Model->getTranslation(), skullPositionDS);

One complication of using the HL custom force effects is that positions and forces are given in device space coordinates (see “Haptic 
Device Cartesian Space” on page 94). In order for this function to compute forces properly, transformations must be done into the 
haptic device space coordinates. The position of the Skull is given in world space. To convert the Skull’s world space position to the 
device space equivalent, the program accesses the WorldToDevice transformation matrix function from the GraphicsCallback function 
(see line 155). Simple matrix math then yields the device space coordinates for the skull. The result is stored in skullPositionDS. 

Line 259 (Get Device Space position for haptic interface point):

hlCacheGetDoublev(cache, HL_PROXY_POSITION, proxyPosition);

The HLAPI function hlCacheGetDoublev queries the cached state of the haptic renderer for the position of the haptic interface point 
(middle of the gimbal at endpoint of the second link); and returns the result in device space coordinates to proxyPosition. 

Line 262 (Compute forces based on the inverse square law):

forceVec = forceField(proxyPosition, skullPositionDS,50.0,5.0);
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Now that we have both the proxyPosition (which is coincident with the red sphere) and the Skull position in device space coordinates, 
the program calls the forcefield function, described on page 45. Given the positions of the Skull and the red sphere in device space, 
this function computes the Coulomb forces between these two entities and returns the result to forcevec.

Lines 268-282 (Delay sending forces until Graphics Loop startup):

counter1++;

if(counter1>2000)

{

  force[0] = forceVec[0];

  force[1] = forceVec[1];

  force[2] = forceVec[2];

  counter1 = 2001;

}

else

{

  force[0] = 0.0;

  force[1] = 0.0;

  force[2] = 0.0;

}

In OpenHaptics, the HD servo loop runs at approximately 1 KHz, or 30 times faster than the graphics loop. Because the servo loop 
starts up before the graphics loop, it is possible that the servo loop may execute up to 30 times before the graphics loop even begins. In 
this brief initial period before the graphics loop startup, it is possible that “junk” values may be sent to the haptic device and command 
forces that exceed its maximum safe operating range. 

This part of the code delays the transmission of unsafe forces by setting forces to zero for two seconds (counter <= 2000 milliseconds). 
This allows the graphics loop sufficient time to start up. After two seconds, the actual forces calculated by the forcefield function can be 
sent safely to the haptic device.

forcefield Function
The program invokes the forcefield function on line 262 that defines the custom force law by calculating new values for the forces to be 
supplied to the device.

The first two parameters of forcefield, Pos1 and Pos2, supply the device space positions of the sphere (proxyPosition) and the Skull 
(skullPositionDS), respectively from line 262.

Line 312 (Get direction of force):

hduvector3Dd diffVec = Pos2 - Pos1;

The force direction is determined by subtracting the device space coordinates of the sphere from the Skull. The difference vector is 
stored in diffVec.

Line 321 (Get magnitude of force)

double dist = diffVec.magnitude();

The magnitude function calculates the scalar magnitude of the force vector diffVec and the result is stored in dist.

Lines 324-328 (Apply spring force if objects overlap):

if (dist < Radius*2.0) 

{

  diffVec.normalize();

  forceVec = (Multiplier) * diffVec * dist /(4.0 * Radius * Radius);

}

If the value of dist is less than twice the Radius parameter (5.0 * 2 or 10.0) passed by forcefield in line 262, the sphere and the Skull 
are considered in close enough proximity to be overlapping. In this case, the force law changes to a simple spring and the two objects 
attract each other until they coincide. 
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Lines 329-332 (Apply inverse square force law):

else 

{

  forceVec = Multiplier * diffVec/(dist*dist);

}

These lines apply the inverse square force law to the two objects. The Multiplier parameter (50.0 in this case) is a constant passed by 
forcefield from line 262. It is used to control the magnitude of the forces rendered by the haptic device.

Lines 337-344 (Ensure forces do not exceed device safe maximum)

for(int i=0;i<3;i++)

{

  if(forceVec[i]>nominalMaxContinuousForce)

      forceVec[i] = nominalMaxContinuousForce; 

  if(forceVec[i]<-nominalMaxContinuousForce)

      forceVec[i] = -nominalMaxContinuousForce;

}

If the forces calculated in lines 324-332 and stored in forceVec exceed the maximum safe operating range of the haptic device 
(nominalMaxContinuousForce), then the value of forceVec is changed to that of nominalMaxContinuousForce. This ensures that 
the forces do not drive the haptic device beyond its safe operating limits.

EXAMPLE 8—HAPTIC RENDERING OF LARGE MODELS 
(SHAPEDEPTHFEEDBACK)
One of the biggest challenges in haptic rendering is performance—in general, the number of operations required to manage the 
Surface Contact Point grows along with the number of faces in the model (see “Proxy Rendering” on page 99). In typical computer 
graphics and visualization, it is a simple matter to use texture maps to add visual detail to a scene, while keeping the geometric 
complexity relatively low. For haptic rendering, this is not always an appropriate approach. High quality haptic shape rendering implies a 
rich geometric description that can be explored through the proxy position. 

Since OpenHaptics 2.0, the HL API has leveraged the hardware array processing capabilities of OpenGL accelerated chips such as 
those made by nVidia®. The HL API implements two shape rendering algorithms that take advantage of different OpenGL techniques, 
each with their own performance and haptic trade-offs. Section “Shape Types” on page 105 goes into a detailed discussion, but the 
following QuickHaptics example tries to show the differences by presenting three large models.

The Stanford Bunny data is courtesy of Dr. Greg Turk at the Georgia Institute of Technology and has over 35,000 vertices. The high 
and low resolution wheel models were created in FreeForm design software and have over 49,000 and 145,000 vertices respectively. 
Note that the one combination we are not able to present is the high resolution wheel with the feedback buffer—the limit for using the 
OpenGL feedback buffer is around 64k vertices.

#include <QHHeadersGLUT.h>

void glutMenuFunction (int MenuID);

void main(int argc, char *argv[])

{

QHGLUT* DisplayObject = new QHGLUT(argc,argv);     //create a display window

DeviceSpace* OmniSpace = new DeviceSpace;

DisplayObject->tell (OmniSpace);

//Load the Stanford Bunny Model -- data courtesy Greg Turk

TriMesh* Bunny = new TriMesh (“models/BunnyRep.ply”);

Bunny->setName(“Bunny”);

Bunny->setTranslation (0.25,-1.0,0.0);

Bunny->setScale (10.0);        //make the model 10 times as large
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Bunny->setStiffness(0.5);

Bunny->setDamping(0.3);

Bunny->setFriction(0.3, 0.5);

Bunny->setShapeColor(205.0/255.0,133.0/255.0,63.0/255.0);   //make brown color

DisplayObject->tell(Bunny);

//Load the low resolution Wheel model

TriMesh* WheelLowRes = new TriMesh (“models/wheel-lo.obj”);

WheelLowRes->setName (“WheelLowRes”);

WheelLowRes->setScale(1/12.0); //scale model to be same as bunny

WheelLowRes->setStiffness(1.0);

WheelLowRes->setFriction(0.5,0.3);

WheelLowRes->setShapeColor(0.65,0.65,0.65);

DisplayObject->tell(WheelLowRes);

//Load the High resolution Wheel model

TriMesh* WheelHighRes = new TriMesh (“models/wheel-hi.obj”);

WheelHighRes->setName (“WheelHighRes”);

WheelHighRes->setScale(1/12.0);

WheelHighRes->setStiffness(1.0);

WheelHighRes->setFriction(0.5,0.3);

WheelHighRes->setShapeColor(0.65,0.65,0.65);

//Set the rendering mode to Depth Buffer. This is because the High resolution

//model contains more than 65536 vertices

WheelHighRes->setRenderModeDepth();

DisplayObject->tell(WheelHighRes);

////////////////////////////////////////////////////////////////////////////

// Create messages to be displayed on screen, with it’s position in

// normalized coordinates. (0,0) is the lower left corner of the screen and

// (1,1) is the upper right corner.

////////////////////////////////////////////////////////////////////////////

Text* RenderModeMsg = new Text(30, “Render Mode: Feedback Buffer”, 0.0, 0.95);

RenderModeMsg->setShapeColor (0.0,0.0,0.0);

RenderModeMsg->setName (“RenderModemessage”);

DisplayObject->tell (RenderModeMsg);

Text* ModelStatMsg = new Text (24, “Stanford Bunny: 35,947 vertices”,0.0, 0.875);

ModelStatMsg->setShapeColor (0.0,0.0,0.0);

ModelStatMsg->setName (“ModelStatMessage”);

DisplayObject->tell(ModelStatMsg);

Text* InstMsg = new Text (24, “Right click on screen to bring up the menu”,

    0.0, 0.05);



3D Systems, Inc. 48

InstMsg->setShapeColor (0.0,0.0,0.0);

InstMsg->setName (“ModelStatMessage”);

DisplayObject->tell(InstMsg);

//Create a new cursor using a 3DS model of a crayon

Cursor* OmniCursor = new Cursor (“models/pencil.3DS”);

OmniCursor->scaleCursor(0.002);  //Scale the cursor because it is too large

TriMesh* ModelTriMeshPointer = OmniCursor->getTriMeshPointer();

ModelTriMeshPointer->setTexture (“models/pencil.JPG”);

DisplayObject->tell(OmniCursor);

////////////////////////////////////////////////////////////////////////////// 

//Make the high and low-res Wheels both haptically and graphically invisible

//////////////////////////////////////////////////////////////////////////////

WheelLowRes->setHapticVisibility (false);

WheelLowRes->setGraphicVisibility (false);

WheelHighRes->setHapticVisibility (false);

WheelHighRes->setGraphicVisibility (false);

//////////////////////////////////////////////

//Create the GLUT menu and add entries

//////////////////////////////////////////////

glutCreateMenu (glutMenuFunction);

glutAddMenuEntry (“Stanford Bunny - Feedback Buffer”, 0);

glutAddMenuEntry (“Stanford Bunny - Depth Buffer”, 1);

glutAddMenuEntry (“Wheel Low Resolution - Feedback Buffer”, 2);

glutAddMenuEntry (“Wheel Low Resolution - Depth Buffer”, 3);

glutAddMenuEntry (“Wheel High Resolution - Depth Buffer”, 4);

//Attach the menu to the right mouse button

glutAttachMenu (GLUT_RIGHT_BUTTON);

//Set everything in motion

qhStart();

}

void glutMenuFunction(int MenuID)

{

//Search for pointer to each of the models

static TriMesh* BunnyPointer = TriMesh::searchTriMesh (“Bunny”);

static TriMesh* WheelLowRes = TriMesh::searchTriMesh (“WheelLowRes”);

static TriMesh* WheelHighRes = TriMesh::searchTriMesh (“WheelHighRes”);

static Text* RenderModeMsgPointer = Text::searchText (“RenderModemessage”);
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static Text* ModelStatMsgPointer = Text::searchText (“ModelStatMessage”);

//If any of the models cannot be found then return

if (! (BunnyPointer && WheelLowRes && WheelHighRes

  && RenderModeMsgPointer && ModelStatMsgPointer))

{

    return;

}

//////////////////////////

if(MenuID == 0)

{

 //Bunny in Feedback Buffer mode

    BunnyPointer->setHapticVisibility (true);

    BunnyPointer->setGraphicVisibility (true);

    WheelLowRes->setHapticVisibility (false);

    WheelLowRes->setGraphicVisibility (false);

    WheelHighRes->setHapticVisibility (false);

    WheelHighRes->setGraphicVisibility (false);

    BunnyPointer->setRenderModeFeedback ();

    WheelLowRes->setRenderModeFeedback ();

    WheelHighRes->setRenderModeDepth ();

    RenderModeMsgPointer->setText (“Render Mode: Feedback Buffer”);

    ModelStatMsgPointer->setText (“Stanford Bunny: 35,947 vertices”);

}

else if(MenuID == 1)

{

    //Bunny in Depth Buffer mode

    BunnyPointer->setHapticVisibility (true);

    BunnyPointer->setGraphicVisibility (true);

    WheelLowRes->setHapticVisibility (false);

    WheelLowRes->setGraphicVisibility (false);

    WheelHighRes->setHapticVisibility (false);

    WheelHighRes->setGraphicVisibility (false);

    BunnyPointer->setRenderModeDepth ();

    WheelLowRes->setRenderModeDepth ();

    WheelHighRes->setRenderModeDepth ();

    RenderModeMsgPointer->setText (“Render Mode: Depth Buffer”);

    ModelStatMsgPointer->setText (“Stanford Bunny: 35,947 vertices”);

}



3D Systems, Inc. 50

else if(MenuID == 2)

{

    //Low res wheel in Feedback Buffer mode

    WheelLowRes->setHapticVisibility (true);

    WheelLowRes->setGraphicVisibility (true);

    BunnyPointer->setHapticVisibility (false);

    BunnyPointer->setGraphicVisibility (false);

    WheelHighRes->setHapticVisibility (false);

    WheelHighRes->setGraphicVisibility (false);

    BunnyPointer->setRenderModeFeedback ();

    WheelLowRes->setRenderModeFeedback ();

    WheelHighRes->setRenderModeDepth ();

    RenderModeMsgPointer->setText (“Render Mode: Feedback Buffer”);

    ModelStatMsgPointer->setText (“Wheel - Low Resolution: 49,989 vertices”);

}

else if(MenuID == 3)

{

    //Low res wheel in Depth Buffer mode

WheelLowRes->setHapticVisibility (true);

    WheelLowRes->setGraphicVisibility (true);

    BunnyPointer->setHapticVisibility (false);

    BunnyPointer->setGraphicVisibility (false);

    WheelHighRes->setHapticVisibility (false);

    WheelHighRes->setGraphicVisibility (false);

    BunnyPointer->setRenderModeDepth ();

    WheelLowRes->setRenderModeDepth ();

    WheelHighRes->setRenderModeDepth ();

    RenderModeMsgPointer->setText (“Render Mode: Depth Buffer”);

    ModelStatMsgPointer->setText (“Wheel - Low Resolution: 49,989 vertices”);

}

else if(MenuID == 4)

{

    //High res wheel in Depth Buffer mode

    WheelHighRes->setHapticVisibility (true);

    WheelHighRes->setGraphicVisibility (true);

    BunnyPointer->setHapticVisibility (false);

    BunnyPointer->setGraphicVisibility (false);

    WheelLowRes->setHapticVisibility (false);
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    WheelLowRes->setGraphicVisibility (false);

    BunnyPointer->setRenderModeDepth ();

    WheelLowRes->setRenderModeDepth ();

    WheelHighRes->setRenderModeDepth ();

    RenderModeMsgPointer->setText (“Render Mode: Depth Buffer”);

    ModelStatMsgPointer->setText (“Wheel - High Resolution: 147,489 vertices”);

}

}

Example 8 (Shape rendering Bunny and Wheel)

The overall structure of the ShapeDepthFeedback example is quite simple. The three different geometry files are loaded and sized so 
that the Bunny and Wheels are all roughly coincident. 

A custom cursor is created from a 3ds Max file with the calls:

Cursor* OmniCursor = new Cursor(“models/pencil.3DS”);

OmniCursor->scaleCursor(0.002);

TriMesh* ModelTriMeshPointer = OmniCursor->getTriMeshPointer();

ModelTriMeshPointer->setTexture(“models/pencil.JPG”);

To fall into the expected position, the pencil should be designed to lie along the Z-axis with the pencil “tip” at the origin. If this 
is not the case for a particular model, it is possible to reorient the cursor with the methods setRelativeShapeOrientation and 
setRelativeShapePosition.

A mouse-driven popup menu is created with the standard GLUT functions:

glutCreateMenu (glutMenuFunction);

glutAddMenuEntry (“Stanford Bunny - Feedback Buffer”, 0);

glutAddMenuEntry (“Stanford Bunny - Depth Buffer”, 1);

glutAddMenuEntry (“Wheel Low Resolution - Feedback Buffer”, 2);

glutAddMenuEntry (“Wheel Low Resolution - Depth Buffer”, 3);

glutAddMenuEntry (“Wheel High Resolution - Depth Buffer”, 4);

//Attach the menu to the right mouse button

glutAttachMenu (GLUT_RIGHT_BUTTON);
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The callback function, glutMenuFunction then does the work of hiding all but the selected model. Again, calls to setHapticVisibility 
and setGraphicVisibility are used to change which models can be touched and seen. Finally the methods setRenderModeDepth and 
setRenderModeFeedback are used to toggle between the two different haptic shape types.

Note that in QuickHaptics, the default RenderMode is feedback buffer. TriMesh models larger than 64k vertices will automatically switch 
the RenderMode to the depth mode.

EXAMPLE 9—A DENTAL SIMULATOR (TEETHCAVITYPICK)
As a technology, haptics has found many applications including teleoperation and telepresence, as a element of robotic control, to 
instrument human proprioceptive response, gaming and 3D design. One of the most exciting areas for haptics is in medical and dental 
training where communicating the feel of how a particular instrument works can be more important than the available visual information. 
It is realistic to imagine a day in which all doctors in the US will have surgery simulators available for learning and certification, much the 
same way that airline pilots use flight simulators.

Our last QuickHaptics example is a “toy” dental simulator that presents a simple framework for this kind of application. Can you find the 
cavity?

#include <QHHeadersGLUT.h>

// Callback functions

void Button1Down_cb (unsigned int ShapeID);

void Button1Up_cb (unsigned int ShapeID);

void Touch_cb (unsigned int ShapeID);

void Graphics_cb (void);

// Global state for directing callback function behavior

bool button1Down;

bool cursorMoving;

bool draggingGumModel;

bool draggingTeethModel;

bool draggingCavityFillModel;

bool draggingCavityModel;

TriMesh* gDentureGum = NULL;

TriMesh* gDentureTeeth = NULL;

TriMesh* gDentureCavityFill = NULL;

TriMesh* gDentureCavity = NULL;

Box* gStartButton = NULL;

Box* gResetButton = NULL;

Text* gStartupMsg = NULL;

Text* gResetMsg = NULL;

Text* gInstructionMsg = NULL;

Text* gSuccessMsg = NULL;

void main(int argc, char *argv[])

{
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QHGLUT* DisplayObject = new QHGLUT (argc,argv);    //create a display window

DeviceSpace* deviceSpace = new DeviceSpace;       //Open “Default Device”

DisplayObject->tell (deviceSpace);

DisplayObject->setBackgroundColor (0.0,0.0,0.6);

// Shrink the haptic workspace to fit around the teeth

DisplayObject->setHapticWorkspace(hduVector3Dd (-40,-40.0,-17.0), 

    hduVector3Dd (95,45.0,17.0));

// Load gums model

TriMesh* tm = new TriMesh (“models/TeethCavityPickModels/dentures-gums.obj”);

gDentureGum = tm;

tm->setName (“dentureGum”);

tm->setShapeColor( 1.0,0.5,0.65);

tm->setRotation(hduVector3Dd (1.0,0.0,0.0), 45.0);

tm->setStiffness (0.5);

tm->setDamping (0.6);

tm->setFriction (0.3,0.0);

DisplayObject->tell ( tm );

// Load teeth model

tm = new TriMesh (“models/TeethCavityPickModels/dentures-teeth.obj”);

gDentureTeeth = tm;

tm->setName (“dentureTeeth”);

tm->setRotation (hduVector3Dd(1.0,0.0,0.0), 45.0);

tm->setStiffness (1.0);

tm->setDamping (0.0);

tm->setFriction (0.0,0.2);

DisplayObject->tell (tm);

// Load cavity model

tm = new TriMesh (“models/TeethCavityPickModels/dentures-cavity fill.obj”);

gDentureCavityFill = tm;

tm->setName (“dentureCavityFill”);

tm->setRotation (hduVector3Dd(1.0,0.0,0.0), 45.0);

tm->setPopthrough (0.25);

tm->setStiffness (0.6);

tm->setDamping (0.3);

tm->setFriction (0.5,0.4);

DisplayObject->tell (tm);
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// Load cavity “target”

tm = new TriMesh (“models/TeethCavityPickModels/dentures-marker.obj”);

gDentureCavity = tm;

tm->setName (“dentureCavity”);

tm->setUnDraggable ();

tm->setRotation(hduVector3Dd (1.0,0.0,0.0), 45.0);

tm->setStiffness (0.2);

tm->setDamping (0.4);

tm->setFriction (0.0,0.0);

DisplayObject->tell( tm);

// Geomagic logo

Plane* logoBox = new Plane (15,9);

logoBox->setTranslation (53.0,-27.0,30.0);

logoBox->setHapticVisibility (false);

logoBox->setTexture (“models/TeethCavityPickModels/geomagicLogo.jpg”);

DisplayObject->tell (logoBox);

// START button

Box* box = gStartButton = new Box 20,10,10);

gStartButton = box;

box->setName (“startButton”);

box->setUnDraggable ();

box->setTranslation (60.0,20.0,0.0);

box->setRotation(hduVector3Dd (0.0,1.0,0.0), -15.0);

box->setTexture (“models/TeethCavityPickModels/start.jpg”);

DisplayObject->tell(box);

// RESET button

box = new Box(20,10,10);

gResetButton = box;

box->setName (“resetButton”);

box->setUnDraggable ();

box->setTranslation (60.0,-5.0,0.0);

box->setRotation(hduVector3Dd (0.0,1.0,0.0), -15.0);

box->setTexture (“models/TeethCavityPickModels/reset.jpg”);

DisplayObject->tell (box);
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// Startup Message

Text* text = new Text (20.0,”Please touch START & press button 1 to begin”, 

    0.25, 0.9);

gStartupMsg = text;

text->setName (“startupMsg”);

text->setShapeColor (0.0,0.5,0.75);

text->setHapticVisibility (false);

text->setGraphicVisibility (true);

DisplayObject->tell (text);

// Reset Message

text = new Text (20.0,”Please touch RESET and press button 1 to Reset the demo”,

    0.2, 0.85);

gResetMsg = text;

text->setName (“resetMsg”);

text->setShapeColor (0.0,0.5,0.75);

text->setHapticVisibility (false);

text->setGraphicVisibility (false);

DisplayObject->tell (text);

// Instruction Message

text = new Text (20.0,”Please locate the cavity  by probing the teeth”, 0.25, 0.9);

gInstructionMsg = text;

text->setName (“instructionMsg”);

text->setShapeColor (0.0,0.5,0.75);

text->setHapticVisibility (false);

text->setGraphicVisibility (false);

DisplayObject->tell (text);

// Success Message

text = new Text (20.0,”OUCH!!&*! You have successfully located the cavity”,

    0.25, 0.9);

gSuccessMsg = text;

text->setName (“successMsg”);

text->setShapeColor (1.0,0.35,0.5);

text->setHapticVisibility (false);

text->setGraphicVisibility (false);

DisplayObject->tell(text);



3D Systems, Inc. 56

//Load a cursor that looks like a dental pick

Cursor* OmniCursor = new Cursor (“models/TeethCavityPickModels/dentalPick.obj”);

TriMesh* cursorModel = OmniCursor->getTriMeshPointer();

cursorModel->setShapeColor (0.35,0.35,0.35);

OmniCursor->scaleCursor (0.007);

OmniCursor->setRelativeShapeOrientation (0.0,0.0,1.0,-90.0);

//Use this function the view the location of the proxy inside the Cursor mesh

//    OmniCursor->debugCursor(); 

DisplayObject->tell(OmniCursor);

//Setup the Event callback functions

DisplayObject->preDrawCallback(Graphics_cb);

deviceSpace->button1DownCallback(Button1Down_cb, gResetButton);

deviceSpace->button1DownCallback(Button1Down_cb, gDentureGum);

deviceSpace->button1DownCallback(Button1Down_cb, gDentureTeeth);

deviceSpace->button1DownCallback(Button1Down_cb, gDentureCavityFill);

deviceSpace->button1DownCallback(Button1Down_cb, gStartButton);

deviceSpace->touchCallback(Touch_cb, gDentureCavity);

deviceSpace->button1UpCallback(Button1Up_cb);

//Set everything in motion

qhStart();

}

void Button1Down_cb(unsigned int ShapeID)

{

TriMesh* modelTouched = TriMesh::searchTriMesh(ShapeID);

Box* buttonTouched    = Box::searchBox(ShapeID);

draggingGumModel = false;

draggingTeethModel = false;

draggingCavityFillModel = false;

draggingCavityModel = false;

if (modelTouched == gDentureGum)

{

    draggingGumModel = true;

    gDentureTeeth->setHapticVisibility(false);

    gDentureCavityFill->setHapticVisibility(false);
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    gDentureCavity->setHapticVisibility(false);

}

else if (modelTouched == gDentureTeeth)

{

    draggingTeethModel = true;

    gDentureGum->setHapticVisibility(false);

    gDentureCavityFill->setHapticVisibility(false);

    gDentureCavity->setHapticVisibility(false);        

}

else if (modelTouched == gDentureCavityFill)

{

    draggingCavityFillModel = true;

    gDentureTeeth->setHapticVisibility(false);

    gDentureGum->setHapticVisibility(false);

    gDentureCavity->setHapticVisibility(false);

}

if (buttonTouched == gStartButton)

{

    gStartupMsg->setGraphicVisibility(false);

    gInstructionMsg->setGraphicVisibility(true);

    gSuccessMsg->setGraphicVisibility(false);

    gResetMsg->setGraphicVisibility(false);

}

else if (buttonTouched == gResetButton)

{

    gInstructionMsg->setGraphicVisibility(false);

    gSuccessMsg->setGraphicVisibility(false);

    gStartupMsg->setGraphicVisibility(true);

    gResetMsg->setGraphicVisibility(false);

}

}

void Button1Up_cb(unsigned int ShapeID)

{

draggingGumModel = false;

draggingTeethModel = false;

draggingCavityFillModel = false;

gDentureGum->setHapticVisibility(true);

gDentureTeeth->setHapticVisibility(true);

gDentureCavityFill->setHapticVisibility(true);

gDentureCavity->setHapticVisibility(true);
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}

void Touch_cb(unsigned int ShapeID)

{

TriMesh* modelTouched = TriMesh::searchTriMesh(ShapeID);

if (modelTouched == gDentureCavity)

{

    gSuccessMsg->setGraphicVisibility(true);

    gStartupMsg->setGraphicVisibility(false);

    gInstructionMsg->setGraphicVisibility(false);

    gResetMsg->setGraphicVisibility(true);

    gDentureCavityFill->setHapticVisibility(false);

}

else

{

    gDentureCavityFill->setHapticVisibility(true);

    gDentureTeeth->setHapticVisibility(true);

    gDentureGum->setHapticVisibility(true);

}

}

void Graphics_cb()

{

hduMatrix globalDragTransform;

if (draggingGumModel)

{

    globalDragTransform = gDentureGum->getTransform();

    gDentureCavity->setTransform(globalDragTransform);

    gDentureTeeth->setTransform(globalDragTransform);

    gDentureCavityFill->setTransform(globalDragTransform);

}

else if (draggingTeethModel)

{

    globalDragTransform = gDentureTeeth->getTransform();

    gDentureCavity->setTransform(globalDragTransform);

    gDentureGum->setTransform(globalDragTransform);

    gDentureCavityFill->setTransform(globalDragTransform);

}

else if (draggingCavityFillModel)

{
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    globalDragTransform = gDentureCavityFill->getTransform();

    gDentureCavity->setTransform(globalDragTransform);

    gDentureGum->setTransform(globalDragTransform);

    gDentureTeeth->setTransform(globalDragTransform);

}

}

Example 9 (Simple dental simulator)

There are four OBJ models used to represent the dental anatomy in this example: the gums; the teeth; a cylinder-shaped cavity filling 
object on the molar at tooth 3; and a smaller cavity object at the base of the filling. This small cavity object, though not visible in the 
scene, is a haptic “target” Shape that is designed to initiate a callback function when it is touched by the pick.

Also in this scene an optimization is made to increase the effective haptic fidelity by concentrating the haptic workspace around the 
teeth model and by specifying a uniform mapping of the haptic space (see “Mapping” on page 111). This is done with a Display 
method that looks like:

DisplayObject->setHapticWorkspace(

    hduVector3Dd(-40,-40.0,-17.0), hduVector3Dd(95,45.0,17.0));

Internally, this QuickHaptics method uses hluFitWorkspaceBox(). Note that in a QuickHaptics application with multiple windows that 
setHapticWorkspace should be called after all windows have been defined.

Each of the four anatomy models is loaded into QuickHaptics in the standard way. The stiffness and damping are set so that the teeth 
are made to feel very hard while the gums are a little softer. The cavity filling has an additional property, set with setPopthrough(). This 
allows the pick to “puncture” the filling when enough pressure is applied.
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As in the previous example, a custom cursor was made for the dental tool, this time in SolidWorks. The code to load this tool into 
QuickHaptics is:

Cursor* OmniCursor = 

    new Cursor (“models/TeethCavityPickModels/dentalPick.obj”);

TriMesh* cursorModel = OmniCursor->getTriMeshPointer ();

cursorModel->setShapeColor (0.35,0.35,0.35);

OmniCursor->scaleCursor (0.007);

OmniCursor->setRelativeShapeOrientation (0.0,0.0,1.0,-90.0);

Note that for debugging purposes, a facility has been provided to see the location of the proxy with the “blue arrow” at the same time 
the mesh is displayed. Turn this on with:

OmniCursor->debugCursor ();

The final scene elements are to define the Start and Reset buttons and the company logo at the bottom right of the screen.

The real work of the program is done within the callback functions. Note that the first three functions are added to the OmniCursor 
instance while Graphics_cb is added to DisplayObject.

• void Button1Down_cb (unsigned int ShapeID);

• void Button1Up_cb (unsigned int ShapeID);

• void Touch_cb (unsigned int ShapeID);

• void Graphics_cb (void);

Button1Down_cb is setup for the gums; teeth; cavity filling; and the two buttons, Start and Reset. 

deviceSpace->button1DownCallback (Button1Down_cb, gResetButton);

deviceSpace->button1DownCallback (Button1Down_cb, gDentureGum);

deviceSpace->button1DownCallback (Button1Down_cb, gDentureTeeth);

deviceSpace->button1DownCallback (Button1Down_cb, gDentureCavityFill);

deviceSpace->button1DownCallback (Button1Down_cb, gStartButton);

This means that the callback function will be invoked only when these objects are touched and the Touch stylus button is pushed. When 
touching the dental anatomy, we want to be able to drag and reposition all four of the models simultaneously. The technique here is to 
take advantage of the standard QuickHaptics draggable property for a single object and then copy the transformation matrix to the other 
objects.

Inside Button1Down_cb we keep track of some global state. If the Start and Reset buttons are touched, the appropriate messages are 
displayed on the screen. If a dental anatomy model is touched, a global variable is set to keep track of which model is being dragged. 
Note also that the other dental models are made haptically invisible with setHapticVisibility to avoid the “bumping” problem described 
earlier in “Example 7—Defining Custom Force Laws (SkullCoulombForce)” on page 34.

The Touch_cb is setup exclusively for the “target” object at the base of the filling. This is done with:

deviceSpace->touchCallback(Touch_cb, gDentureCavity);

When the target is hit, the “Success” messages are displayed to the screen and the cavity filling is made haptically invisible with:

gDentureCavityFill->setHapticVisibility(false);

This step is taken so that after the dental pick “pops through” the filling, there is no residual force that will then force the pick back out of 
the model.
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The Button1Up_cb callback function is enabled in general, independent of a particular Shape and is called whenever the stylus button 
is released. This function resets the global state and reverses the haptic invisibility of the cavity filling and the other dental anatomy 
objects. The QuickHaptics call for this is:

deviceSpace->button1UpCallback(Button1Up_cb);

Finally, Graphics_cb is defined as a QuickHaptics callback with:

DisplayObject->preDrawCallback(Graphics_cb);

Graphics_cb takes advantage of the QuickHaptics built-in draggable property by using the information for which Shape is being 
dragged, getting that Shape’s transformation matrix and then copying that matrix to the other dental anatomy models. For example, if 
the Gums are initially touched with Button1Down,

if (draggingGumModel)

{

    globalDragTransform = gDentureGum->getTransform();

    gDentureCavity->setTransform(globalDragTransform);

    gDentureTeeth->setTransform(globalDragTransform);

    gDentureCavityFill->setTransform(globalDragTransform);

}

dOxygen Manual pages
While we hope that this introduction to programming with QuickHaptics has proven useful, we also recognize that “real programmers 
like real documentation”. To that end we have added a link to dOxygen generated software reference documentation at the Developer’s 
Support Center. Besides “saving trees”, there are a lot of advantages to having hosted man pages: constant updates, better 
synchronization with the actual software and hyper-linked browsing.

To access the DSC, go to http://dsc.sensable.com.
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A sample for the TriMesh class follows:

1

TriMesh Class Reference 
This class loads triangle or quadrilateral meshes.  
#include <TriMesh.h>
Inherits Shape. Collaboration diagram for TriMesh: 

Public Member Functions 
• bool getDynamicState (void) 

This function returns the state of the DynamicMeshFlag variable.  
• hduBoundBox3Dd getBoundBox (void) 

This function returns the bound box of the Trimesh.  
• TriMesh (char *m_FileName) 

This function is used to load a 3D model in to the QuickHaptics uAPI.  
• TriMesh (char *m_FileName, bool flip) 

This function is used to load a 3D model in to the QuickHaptics uAPI. The additional 
parameter flip turns the model inside out.  

• TriMesh (char *m_FileName, HLdouble scale, HLdouble m_PositionX, HLdouble m_PositionY, 
HLdouble m_PositionZ) 
This function is used to load a 3D model in to the QuickHaptics uAPI. This constructor 
allows the programmer to specify the location of the model in worldspace.  

• TriMesh (char *m_FileName, HLdouble scale, HLdouble m_PositionX, HLdouble m_PositionY, 
HLdouble m_PositionZ, bool flip) 
This function is used to load a 3D model in to the QuickHaptics uAPI. This constructor 
allows the programmer to specify the location of the model in worldspace. The flip parameter 
turns the models inside out.

• TriMesh (char *m_FileName, HLdouble scale, HLdouble m_PositionX, HLdouble m_PositionY, 
HLdouble m_PositionZ, HLdouble AxisX, HLdouble AxisY, HLdouble AxisZ, HLdouble 
m_RotationFlag, bool m_FacetNormalsFlag, bool flip) 
This function is used to load a 3D model in to the QuickHaptics uAPI. This constructor 
allows the programmer to specify the location of the model in worldspace and additionally 
the programmer can also specify the rotation of the model about a given axis.  

• TriMesh () 
Constructor with outfilename. In case the programmer uses this by accident, no exception 
should be generated. the constructor properly initialises all variables to prevent any 
exceptions.

• ~TriMesh () 
Frees the memory allocated to vertices, normals etc..  

• void update (char *m_FileName) 
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SUMMARY OF DEFAULT VALUES
To make QuickHaptics programming more efficient, many default values are provided in the class constructors to limit the number of 
decisions that must be made when developing a new application. The following tables describe these default values for Shapes and 
other properties:

Table: 3-1: Default Parameter Values for Shape and Display Windows

Default Shape Parameter Default Value

All Shapes
Color .8, .8, .8

Red, green and blue values should be from 
(0-1)

Box
Length, width, height 
Positioning

0.5, 0.5, 0,5 
Centroid at origin

Cone & cylinder

Radius

Height

Height resolution

Circumferential resolution

Positioning

0.5

1

10 circular slices

10 pie-shaped slices

Base of cone/cylinder at origin

Line

Starting point

Stopping point

Width

Origin

X=1,Y=1, Z=1

1.0

Plane

Width

Height

Positioning

Coordinate alignment

0.5

0.5

Center of plane at origin

Plane aligned along X/Y plane

Sphere

Radius

Resolution

Positioning

0.5

20 latitude and longitude lines

Centroid at origin

Text

Text

Font size

Font file

Positioning: normalized screen coordinates 
for text

  bottom/left is (0,0,-1)

  top/right is (1,1,-1)

“Hello World”

32 pt

TEST.TTF (Arial Black)

Default text position is bottom/left of screen 
(0,0,-1)

 

Display window

Size

Positioning

Background color

Title

 
Haptically Enabled

500 by 500 (screen coordinates)

Not defined

Custard

“QuickHaptics – GLUT Window” or 
“QuickHaptics – Win32 Window”

All windows are haptically enabled by 
default. For a multiple window application, 
be sure to disable all windows, except for 
one.
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Default Shape Parameter Default Value

Light ()

Position

 
Enabled or Disabled

Diffuse Color

Ambient Color

Always follows the camera. Positioned at 
(0,0,1) with respect to the camera.

Enabled

1, 1, 1, 1

0, 0, 0, 1

Lights 1-7

Position

Enabled or Disabled

Diffuse Color

Ambient Color

Specular Color

0, 0, 0

Disabled

.5, .5, .5, 1

0, 0, 0, 1

.5, .5, .5, 1

Table: 3-2: Default Haptic Material and Motion Properties

Default Shape Parameter Default Value

Haptic Material

Stiffness 0.5 (midpoint of haptic device range). 
Applies by default to both the inside and 
outside surfaces of objects.

NOTE: 1 represents the hardest surface 
the haptic device is capable of rendering 
and 0 represents the most compliant 
surface that can be rendered.

Damping 0.5 (midpoint of haptic device range). 
Applies by default to both the inside and 
outside surfaces of objects.

NOTE: 0 represents no damping, i.e. a 
highly springy surface, and 1 represents 
the maximum level of damping possible.

Magnetic “contact” snap distance 15 mm

Static friction 0 (range = 0 to 1). 

NOTE: 0 is a completely frictionless 
surface and 1 is the maximum amount 
of static friction the haptic device is 
capable of rendering. The same value 
is applied to both sides of a touchable 
object.

Dynamic friction 0 (range = 0 to 1).

NOTE: 0 is a completely frictionless 
surface and 1 is the maximum amount 
of dynamic friction the haptic device is 
capable of rendering. The same value 
is applied to both sides of a touchable 
object.

Pop through 0 (range = 0 to 1). Applies to front and back 
faces.

NOTE: ‘1’ represents the highest 
pop through value. The force applied 
changes linearly with the supplied 
value. ‘0’ disables the pop through 
effect.
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Default Shape Parameter Default Value
Touchable face “FRONT”

Valid choices are “FRONT”, “BACK” or 
“FRONT_AND_BACK”.

Shape Render Mode Feedback

Valid choices are Feedback or Depth.

Draggable objects
Ability to haptically grab and drag objects 
by pushing Touch stylus button

.05 (range is -1 to 1)

Spin

Rate

Axis of rotation

.05 (range is -1 to 1)

This is equivalent to 9 degrees/second, 
independent of graphic frame rate

Y axis

Orbit

Rate

 
 
Axis of orbit 
Center point of orbit

.05 (range is -1 to 1)

This is equivalent to 9 degrees/second, 
independent of graphic frame rate

Y axis 
Origin

Deformable TriMesh Shapes

Mass per node

Spring stiffness

Damping

Gravity

1.0

.25

.25

0, -9.8, 0
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4 CREATING HAPTIC ENVIRONMENTS

Haptics programming, at its most fundamental level, can be considered a form of rendering that produces forces to be displayed by 
a haptic device. Haptics programming can be highly interdisciplinary, combining knowledge from physics, robotics, computational 
geometry, numerical methods, and software engineering. Despite this, achieving compelling interactions with a haptic device is actually 
quite approachable. The purpose of this chapter is to introduce some of the fundamental concepts and techniques used in haptics 
programming and to stimulate thought about the wealth of possibilities for incorporating haptics into a virtual environment. 

This chapter contains the following sections:

4

INTRODUCTION TO FORCES 68
FORCE RENDERING 68
CONTACT AND CONSTRAINTS 69
COMBINING HAPTICS WITH GRAPHICS 69
COMBINING HAPTICS WITH DYNAMICS 70
HAPTIC UI CONVENTIONS 70
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INTRODUCTION TO FORCES
If you are altogether unfamiliar with haptics, you may be wondering how forces can be used to extend user interaction within a virtual 
environment. For the class of haptic devices supported by the OpenHaptics toolkit, forces are typically used to either resist or assist 
motion (i.e. force feedback). 

There are a variety of ways to compute the forces that are displayed by the haptic device. Some of the most interesting force 
interactions come from considering the position of the device end-effector (the end of the kinematic chain of the device you hold in your 
hand) and its relationship to objects in a virtual environment. When zero force is being rendered, the motion of the device end-effector 
should feel relatively free and weightless. As the user moves the device’s end-effector around the virtual environment, the haptics 
rendering loop commands forces at a very high rate (1000 times per second is a typical value) that impedes the end-effector from 
penetrating surfaces. This allows the user to effectively feel the shape of objects in a virtual environment. 

The way in which forces are computed can vary to produce different effects. For example, the forces can make an object surface feel 
hard, soft, rough, slick, sticky, etc. Furthermore, the forces generated by the haptics rendering can be used to produce an ambient 
effect. For instance, inertia, and viscosity are common ways to modify the otherwise free space motion of the user in the environment. 
Another common use of forces in a virtual environment is to provide guidance by constraining the user’s motion while the user is 
selecting an object or performing a manipulation.OpenHaptics vs. QuickHaptics micro API Functionality

FORCE RENDERING
The force vector is the unit of output for a haptic device. There are numerous ways to compute forces to generate a variety of 
sensations. The three main classes of forces that can be simulated are: motion dependent, time dependent, or a combination of both.
DeviceSpace—Workspace through which the haptic device can move

Motion Dependent
A force that is motion dependent means that it is computed based on the motion of the haptic device. A number of examples of motion 
dependent force rendering follow:

Spring:
A spring force is probably the most common force calculation used in haptics rendering because it is very versatile and simple to use. 
A spring force can be computed by applying Hooke’s Law (F = kx, where k is a stiffness constant and x is a displacement vector). The 
spring is attached between a fixed anchor position and the device position . The fixed anchor position is usually placed on the surface 
of the object that the user is touching. The displacement vector x = – is such that the spring force is always directed towards the fixed 
anchor position. The force felt is called the restoring force of the spring, since the spring is trying to restore itself to its rest length, which 
in this case is zero. The stiffness constant k dictates how aggressively the spring will try to restore itself to its rest length. A low stiffness 
constant will feel loose, whereas a high stiffness constant will feel rigid.

Damper:
A damper is also a common metaphor used in haptics rendering. Its main utility is for reducing vibration since it opposes motion. In 
general, the strength of a damper is proportional to end-effector velocity. The standard damper equation is F = -bv, where b is the 
damping constant and v is the velocity of the end-effector. The force is always pointing in the opposite direction of motion.
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Friction:
There a number of forms of friction that can be simulated with the haptic device. These include coulombic friction, viscous friction, static 
friction and dynamic friction. 

Coulombic friction
The most basic form is coulombic friction, which simply opposes the direction of motion with a constant magnitude friction force. In 
1-D, the coulombic friction force can be represented by the equation F=-c sgn(v); where v is the velocity of the end-effector and c is the 
friction constant. Typically, this is implemented using a damping expression with a high damping constant and a small constant force 
clamp. Coulombic friction helps to create a smooth transition when changing directions, since friction will be proportional to velocity for 
slow movement. 

Viscous friction
A second form of friction that is also common is viscous friction, which is very similar to coulombic friction in that the friction is also 
computed using a damping expression and a clamp. The difference is that the damping constant is low and the clamp value tends to be 
high.

Static and dynamic friction
This form of friction is typically referred to as stick-slip friction. It gets its name because the friction model switches between no relative 
motion and resisted relative motion. The friction force is always opposing lateral motion along a surface, and the magnitude of the 
friction force is always proportional to the perpendicular (normal) force of contact. 

Inertia:
Inertia is a force associated with moving a mass. If one knows a given trajectory (for example, the solution of the equations of motion), 
one can easily calculate the force one would feel during that motion using Newton’s Law: F=ma (force is equal to mass x acceleration).

Time Dependency
A force that is time dependent means that it is computed as a function of time. Below are a number of examples of time dependent 
force rendering:

Constant:
A constant force is a force with a fixed magnitude and direction. It is commonly used for gravity compensation such as to make the end-
effector feel weightless. Conversely, it can also be used to make the end-effector feel heavier than normal.

Periodic:
A periodic force comes from applying a pattern that repeats over time. Patterns include saw tooth, square, or sinusoid. A periodic force 
is described by a time constant, which controls the period of the pattern’s cycle, and an amplitude, which determines how strong the 
force will be at the peak of the cycle. Additionally, the periodic force requires a direction. The amplitude should not exceed the maximum 
force the device can output or the shape of the waveform will be clipped. Additionally, the frequency of the waveform is limited by the 
servo loop rate of the device. For instance, the theoretical upperbound of vibration frequency is half the servo loop rate of the device.

Impulses:
An impulse is a force vector that is instantaneously applied. In practice, an impulse with a haptic device is best applied over a small 
duration of time. Also, achieving believable impulses, such as the sort used for a gun recoil requires that the force transient be as 
sharp as possible. Humans are perceptually more sensitive to discontinuities in force than steady state force. Therefore, a larger force 
derivative at a lower magnitude will feel more compelling than a smaller force derivative at a higher magnitude. Note however that, 
trying to render a force that has too high a derivative may be ineffective due to physical limitations of the device.
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CONTACT AND CONSTRAINTS
Simulating contact with a virtual object amounts to computing forces that resist the device end-effector from penetrating the virtual 
object’s surface. One approach to simulate this interaction is through the concept of a proxy that follows the transform of the device 
end-effector in the virtual environment.

SCP is a point that attempts to follow the end-effector position but is constrained to be on the surface of the object. In free space the 
SCP is at the end-effector position as shown in t0. When touching an object the SCP can be calculated by moving the last SCP towards 
the end-effector position without violating the surface. The force is calculated by simulating a spring stretched from the end-effector 
position to the SCP. t1 shows penetration into the object. t2 shows further penetration – the spring is stretched longer and hence the 
user will feel greater resistance.

The geometry for the proxy is typically a point, sphere or collection of points. If it is a point, it is sometimes referred to as the SCP 
(surface control point) see image below for more information. When the device end-effector penetrates a surface, a transform for the 
proxy should be computed that achieves a minimum energy configuration between the contacted surface and the device end-effector. 
In addition, the proxy should respect spatial coherence of contact. For example, always reference the proxy’s last transform in the 
process of computing its new transform. As a result of computing a constrained proxy transform, forces can then be determined that will 
impede the motion of the haptic device end-effector from further penetrating the contacted surface. A simple spring-damper control law 
can be used for computing the force. There are numerous papers in haptics rendering literature that present computational models to 
solve for the proxy. This technique of maintaining a constrained proxy can be applied to feeling all kinds of geometry, such as implicit 
surfaces, polygonal meshes, and voxel volumes. It can also be applied to feeling geometric constraints, such as points, lines, planes, or 
combinations of those.

COMBINING HAPTICS WITH GRAPHICS
Typically, haptic devices are not employed in isolation. They are most often used to enhance the user experience in conjunction with 
a virtual 3D graphical environment. The first issue to consider when combining haptics with 3D graphics is that the refresh rate for 
displaying forces on the haptic device is more than an order of magnitude higher than the refresh rate necessary for displaying images 
on the screen. This difference stems from the psycho-physics of human perception. Typically, a graphics application will refresh the 
contents of the framebuffer approximately 30-60 times a second in order to give the human eye the impression of continuous motion on 
the screen. However, a haptic application will refresh the forces rendered by the haptic device at approximately 1000 times a second 
in order to give the kinesthetic sense of stiff contact. If the frame rate of a graphics application is run at a rate lower than 30 Hz, the 
user may perceive discontinuities in an animation such that it no longer appears visually smooth. Similarly, the user may perceive force 
discontinuities and a loss in fidelity when the haptic device is refreshed at a rate below 1000 Hz. As a result, haptics and graphics 
rendering are typically performed concurrently in separate threads so that each rendering loop can run at its respective refresh rate. 
Beyond the refresh rate of the two rendering loops, it’s also important to consider the time duration of each rendered frame. For 
graphics rendering, maintaining a 30 Hz refresh rate requires that all rendering take place within 1/30th of second (i.e. 33 ms). Contrast 
this with the 1 ms frame duration of the haptics rendering loop, and it becomes apparent that there’s a significant disparity in the 
amount of time available to perform haptics rendering computations versus graphic rendering computations. In both cases, the loops 
are generating frames, except the haptics loop is generating ~33 frames every time the graphics loop generates one. This is a very 
important point to keep in mind, especially in an application where more than one object is moving on the screen or being felt by the 
haptic simulation at the same time.

The HLAPI allows you to specify geometry for haptic rendering in the same thread and at the same rate as graphics. It takes care of the 
1000hz haptics updates for you so that you do not have to implement any haptic rendering in the 1000hz haptics thread or implement 
state synchronization between haptics and graphics threads.
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State Synchronization
State synchronization becomes important when managing a user interface that involves both haptics and graphics because there are 
two rendering loops that need access to the same information. This typically involves making thread-safe copies of data available to 
each thread as a snapshot of state. One might be inclined to just use mutual exclusion as a synchronization technique, but that can 
easily introduce problems. Most importantly, the haptics rendering loop must maintain a 1000 Hz refresh rate and thus should never 
wait on another lower priority thread to release a lock, especially when that lower priority thread is making other system calls that may 
block for an indeterminate amount of time. Secondly, the disparity in refresh rate between the graphics loop and haptics loop makes it 
very easy to display inconsistent state if multiple objects are moving on the screen at the same time. Therefore, it is advised to always 
treat state synchronization between the threads as a snapshot copy operation versus accessing data in a disjointed fashion using a 
mutex. 

Event Handling
In addition to state synchronization, event handling is the other common interface between haptics and graphics loops that needs 
special consideration. Event handling, in the context of a haptic device, typically involves responding to button presses and haptic 
specific events, such as touching or popping through a surface. However, the event handler must often times respond to the event 
in a dual-pronged fashion where the event is first handled in the haptics thread, so as to provide an immediate haptic response, then 
queued and handled by the graphics thread to affect the content displayed on the screen or the application state. The important point 
is that haptic response to an event often needs to be immediate, whereas the visual response can at least wait until the next graphics 
frame. One example is when applying a constraint.

If a constraint is, for example, actuated by a button press, it needs to be enabled immediately when that button press is detected in the 
haptics loop. Otherwise, the user will feel the constraint only after a delay.

COMBINING HAPTICS WITH DYNAMICS
A haptic device is a natural interface for a dynamic simulation because it allows the user to provide both input to the simulation in the 
form of forces, positions, velocity, etc. as well as receive force output from the simulation. There are a number of powerful dynamic 
toolkits available that have been successfully used with haptic devices. Using a dynamic simulation with a haptic device requires special 
treatment, however. First a dynamic simulation works by integrating forces applied to bodies. When dealing with a position controlled 
impedance style haptic device, such as the kind currently supported by the OpenHaptics toolkit, forces are not directly available as 
input. Additionally, the mechanical properties and digital nature of the haptic device make it challenging to directly incorporate as part of 
the simulation. 

Combining a haptic device with a dynamic simulation tends to be much more approachable and stable if a virtual coupling technique 
is used. Virtual coupling introduces a layer of indirection between the mechanical device and the simulation. This indirection is most 
readily accomplished using a spring-damper between a simulated body and the device end-effector. The spring-damper provides a 
stable mechanism for the haptic device and the simulated body to exchange forces. Optionally, the spring-damper can use different 
constants for computing the force for the device versus the force for the simulated body, which allows for easier tuning of forces 
appropriate for the device versus forces appropriate for the simulation. 

There is an additional issue with integrating a dynamic simulation with a haptic device that often needs to be addressed, which is 
update rate (or step size). Only simple dynamic simulations will be able to run at the haptic device’s servo loop rate (for example, 
~1000 Hz). Typically, the dynamic simulation is only optimized to run at the same rate as the graphics loop (~30 Hz), or rarely faster 
(~100 Hz). This means that the simulation will need to be stepped in a separate thread, and there needs to be a synchronization 
mechanism to update the positional inputs used by the virtual coupling. Each thread will deal with a sampling of the respective spring-
damper positions. The spring-damper used by the haptic device will be attached to an anchor that updates its position every time the 
dynamic simulation is stepped. Similarly, the dynamic simulation will sample the device position before each simulation step so that it 
can compute an input force to apply to the simulated body. In some instances, it may also be necessary to introduce interpolation or 
extrapolation of the exchanged positions to provide for more fluid forces, otherwise the user may experience a drag sensation or jerky 
motion.

HAPTIC UI CONVENTIONS
There are a variety of ways to apply haptics to create a compelling, intuitive and satisfying user experience. Below are a number of user 
interface conventions that are commonly applied when using haptics in a virtual environment.

• Gravity Well Selection

• View-Apparent Gravity Well Selection

• Depth Independent Manipulation

• Relative Transformations

• Coupling Visual and Haptic Cues

• Stabilize Manipulation with Motion Friction
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Gravity Well Selection
It is very common in haptics programming that the user is allowed to select a point in 3D for manipulation. The gravity well is a useful 
UI convention for allowing the user to more readily select 3D points with the assistance of force feedback. The gravity well is used as a 
way to attract the device towards a point location; sometimes referred to as a haptic snap or a snap constraint. Typically, the gravity well 
has some radius of influence. When the device passes within that radial distance from the gravity well, a force is applied to attract the 
device towards the gravity well center. The most common attraction force is a spring force, which can be simulated by applying Hooke’s 
Law for a spring with zero rest length. For example, a simple gravity well may use F=kx, where k is the spring constant and x is the 
displacement vector pointing from the device position to the center of the gravity well.

View-Apparent Gravity Well Selection
Even with full six degrees of freedom (6DOF) control over the position and orientation of a 3D cursor in the scene, it is still a challenge 
to quickly locate an object in 3D when viewing the scene on a 2D display. This is typically due to the lack of visual depth cues. To 
overcome this limitation, one can borrow from the traditional 2D mouse ray picking approach. Ray picking uses the view vector or 
perspective reference point and a point on the near plane to perform a ray intersection query with the scene. This effectively allows the 
user to select an object by virtue of placing the mouse cursor overtop of it in 2D. The same principle holds when applied to a 3D haptic 
device. Instead of having to actually locate an object directly in 3D, it is often faster and easier to merely hover overtop of the object in 
the view. This concept can be extended to provide a higher dimensionality gravity well. Instead of the user fishing around to find a 3D 
point, the haptic device can be snapped to a 3D line passing from the view through the point of interest. This is sometimes also referred 
to as boreline selection. It is simple to implement, and very effective especially when attempting to select points or handles in 3D with 
little or no visual depth cues.

Depth Independent Manipulation
The concept of depth independent manipulation goes hand-in-hand with view-apparent gravity well selection. Depth independent 
manipulation allows the user to initiate a manipulation relative to the object’s initial location in 3D. This is somewhat like having 
a extendable arm that can automatically offset to the depth of the object to be manipulated. The offset is preserved during the 
manipulation so that the object effectively moves relative to its original location, but then the offset is removed once the manipulation 
is complete. This is most readily implemented by applying a translation to the device coordinates so that its position at the start of the 
manipulation is at the object’s initial position.

Relative Transformations
Haptic devices are typically absolute devices, because of the mechanical grounding necessary to provide the force actuation. 
Therefore, the only way to accommodate non-absolute manipulation is to apply additional transformations to the device coordinates 
such that the device appears to be moving relative to a given position and orientation instead of its mechanically fixed base. A relative 
transformation is a generalization of the depth independent manipulation idea. Instead of just being a translational offset, the transform 
modifications are relative to the initial affine transform relationship between the device and the object to be manipulated. Imagine 
spearing a potato with the prongs of a fork. The fork fixes the relative transformation between your hand and the potato, making it 
possible to position and rotate the potato relative to its initial transform, despite the fact that your hand is some arbitrary distance 
away holding onto the fork. This metaphor can be applied to virtual object manipulations with a haptic device by introducing a relative 
transformation between the device coordinates and the object coordinates.

Coupling Visual and Haptic Cues
A first-time user may be surprised by how much more satisfying and engaging a user interaction can be when more than one sense is 
involved. In the case of haptics, the sense of feeling something can be improved dramatically by providing a visual representation of 
the contact. The trick is to provide the correct visual. For instance, one of the most common mistakes with haptics is to haptically render 
contact with a rigid virtual object yet visually display the device cursor penetrating its surface. The illusion of contacting a rigid virtual 
object can be made significantly more believable if the cursor is never displayed violating the contact. In most cases, this is simply a 
matter of displaying the constrained proxy instead of the device position. Haptic cues can also be used to reinforce visual cues. For 
instance, it is common for selection of an object to be preceded or accompanied by highlighting of the object. An appropriate haptic cue 
can make that highlighting even more pronounced by providing a gravity well or a localized friction sensation.

Stabilize Manipulation with Motion Friction
In some instances, it will be desirable to have a small amount of friction applied while performing an otherwise free space manipulation. 
The friction helps to stabilize the hand as the user tries to achieve a desired position. Without the friction, the device may feel too “free” 
or loose and it may be difficult for a user to make small or precise manipulations.
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5 5 SETTING UP MICROSOFT VISUAL STUDIO DEVELOPER ENVIRONMENT

To develop haptic applications using Openhaptics / QuickHaptics, you will need to setup the Microsoft Visual studio developer 
environment. Screenshots shown below are from the MS Visual studio version 2010 but other versions should have similar settings. 

We assume that you have already created a new but empty console / Win32 / MFC project in MS visual C++. 

This chapter includes the following sections:

CHOOSING THE APPLICATION PLATFORM AND CONFIGURATION 73
SETUP THE CHARACTER SET 74
SETUP THE INCLUDE DIRECTORIES 75
SETUP THE RUNTIME LIBRARY 76
SETUP THE LIBRARY DIRECTORIES 76
SETUP THE LIBRARY DEPENDENCIES 78
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CHOOSING THE APPLICATION PLATFORM AND CONFIGURATION
One needs to choose the right platform and configuration before setting up the project properties. 

Please choose the appropriate platform and configuration from the drop down menu as shown in the figures below. 

OpenHaptics supports both Win32 and X64 development platforms on 64-bit systems. 

NOTE: OpenHaptics academic version users must choose the configuration tagged “academic” to setup the project. 
Choose the platform that you will use to run the OpenHaptics application.
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Select the Configuration of OpenHaptics that you will use.

SETUP THE CHARACTER SET
Under windows, it is recommended to setup the character set to “Multi-Byte character set” as shown in the figure.
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SETUP THE INCLUDE DIRECTORIES
Simulating contact with a virtual object amounts to computing forces that resist the device end-effector from penetrating the virtual Set 
the correct include path, as shown below in the “Additional include directories.”All important include paths:

• $(OH_SDK_BASE)\include: Main include directory for Openhaptics

• $(OH_SDK_BASE) \utilities\include: Include directory for Openhaptics utilities

• $(OH_SDK_BASE)\QuickHaptics\header: Main include directory for QuickHaptics. 
Setting the include path as indicated above enables you to include header files as follows:

• #include <HD/hd.h>

• #include <HL/hl.h>

• #include <QHHeadersGLUT.h>

• #include <QHHeadersWin32.h>

• #include <HDU/hduVector.h>

• #include <GL/glut.h>
 NOTE: $(OH_SDK_BASE) macro points to the OpenHaptics install directory.

Additional Include Directories window.Set the correct include path, as shown below in “Additional Include Directories.”
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SETUP THE RUNTIME LIBRARY
Link the C-runtime (CRT), as shown below in “Runtime Library.” The options are Multi-threaded DLL (/MD) or Multi-threaded Debug DLL 
(/MDd) based on the configuration you have selected. 

WARNING: AS AN SDK DEVELOPER, YOU NEED TO MAKE SURE THAT YOU LINK YOUR APPLICATION WITH THE MULTI-THREADED 
CRT. OTHERWISE UNPREDICTABLE BEHAVIOR, INCLUDING CRASHES, CAN OCCUR.

Event Handling

SETUP THE LIBRARY DIRECTORIES
Make sure the linker paths are set correctly on the “Additional Library Directories“ line so that the library files can be found when your 
application links.

All important library paths include:

• $(OH_SDK_BASE)\lib\$(Platform)\$(Configuration): Main OpenHaptics library directory. 

• $(OH_SDK_BASE)\utilities\lib\$(Platform)\$(Configuration): OpenHaptics utilities library directory. 

• $(OH_SDK_BASE)\QuickHaptics\lib\$(Platform)\$(Configuration): QuickHaptics library directory. 
The macro $(Platform) points to the folders “Win32” or “X64” based on the platform selected in the section “Choosing the Application 
Platform and Configuration.” 

The macro $(Configuration) points to the different configuration folders selected in the section “Choosing the Application Platform and 
Configuration.” 
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See the following tables for details on the real Lib Path for both the Academic and Commercial editions of OpenHaptics.

Table: 5-1: Academic Edition

Platform LIB Path
Win 32 $(OH_SDK_BASE)\lib\Win32\DebugAcademicEdition
Win 32 $(OH_SDK_BASE)\lib\Win32\ReleaseAcademicEdition
X64 $(OH_SDK_BASE)\lib\X64\DebugAcademicEdition
X64 $(OH_SDK_BASE)\lib\X64\ReleaseAcademicEdition

Table: 5-2: Commercial Edition

Platform LIB Path
Win 32 $(OH_SDK_BASE)\lib\Win32\Debug
Win 32 $(OH_SDK_BASE)\lib\Win32\Release
X64 $(OH_SDK_BASE)\lib\X64\Debug
X64 $(OH_SDK_BASE)\lib\X64\Release

 

Setting up the Library Directories.
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SETUP THE LIBRARY DEPENDENCIES
Add the appropriate library modules as shown below in “Additional Dependencies.” Depending on the project under development, you 
may need one or more of these libraries to be included as dependencies. 

• hd.lib: HDAPI library

• hdu.lib: HD utility library

• hl.lib: HLAPI library

• hlu.lib: HL utility library

• hapticmouse.lib : haptic mouse library

• snapconstraints.lib: haptic interface constraints library. 

• Qh.lib: Main quickHaptics library

• QHWin32Wrapper.lib: Quickhaptics Win32 wrapper library

• QHGLUTWrapper.lib: QuickHaptics Glut wrapper library. 

• glui32.lib: Glut user interface library. 

• glut32.lib: OpenGL utility kit

Now you are ready to start programming haptic applications using Openhaptics or QuickHaptics under the MS Visual studio developer 
environment.
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6 6 HDAPI OVERVIEW

The Haptic Device API (HDAPI) consists of two main components: the device and the scheduler. The device abstraction allows for any 
supported 3D haptics mechanism (see the Installation Guide or readme for a list of supported devices) to be used with the HDAPI. The 
scheduler callbacks allow the programmer to enter commands that will be performed within the servo loop thread. A typical use of the 
HDAPI is to initialize the device, initialize the scheduler, start the scheduler, perform some haptic commands using the scheduler, then 
exit when done.

This chapter includes the following sections:

GETTING STARTED 79
THE DEVICE 79
THE SCHEDULER 79
DEVELOPING HDAPI APPLICATIONS 80
MICROSOFT WIN32 VERSUS CONSOLE APPLICATIONS 83
DESIGN OF TYPICAL HDAPI PROGRAM 84
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GETTING STARTED
The HDAPI requires a supported 3D haptic device with installed drivers, and the installed HDAPI. Projects should use the main HDAPI 
headers or utilities and link with the HDAPI library as well as any utility libraries for those being used. 

The general pattern of use for the HDAPI is to initialize a device, create scheduler callbacks to define force effects, enable forces, and 
start the scheduler. Force effects are typically calculated based on the position of the device, one example of a force effect may query 
the position of the device during each scheduler tick and calculate a force based on that. 

A simple example
Consider a simple haptic plane example. The example application creates a plane that repels the device when the device attempts to 
penetrate the plane. The steps in this example are:

1. Initialize the device.

2. Create a scheduler callback that queries the device position and commands a force away from the plane if the device penetrates 
the plane.

3. Enable device forces.

4. Start the scheduler.

5. Cleanup the device and scheduler when the application is terminated.

THE DEVICE
Calls to the device typically involve managing state, setting parameters, and sending forces. The device interface also allows for 
managing multiple devices. Device routines broadly fall into a few categories:

Device initialization Includes everything necessary to communicate with the device. This generally involves creating a handle to the 
device, enabling forces, and calibrating the device.

Device safety Includes routines to handle force feedback safety checks. Examples include overforce, overvelocity, force ramping, and 
motor temperature parameters. Some safety mechanisms are controlled by the underlying device drivers or hardware and cannot be 
overwritten. 

Device state Includes getting and setting state. Examples include querying buttons, position, velocity, and endpoint transform 
matrices. Forces and torques are commanded by setting state. Forces and torques can be specified in Cartesian space or with raw 
motor DAC values.

THE SCHEDULER
The scheduler manages a high frequency, high priority thread for sending forces and retrieving state information from the device. 
Typically, force updates need to be sent at 1000 Hz frequency in order to create compelling and stable force feedback. The scheduler 
interface allows the application to communicate effectively with the servo loop thread in a thread-safe manner, and add operations to 
be performed in the servo loop thread.
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DEVELOPING HDAPI APPLICATIONS
To develop an HDAPI enabled application you will need to:

1. Link the multi-threaded C-runtime (CRT), as shown below in “Runtime Library.

Linking the Multi-threaded C-runtime

WARNING: AS AN SDK DEVELOPER, YOU NEED TO MAKE SURE THAT YOU LINK YOUR APPLICATION WITH THE MULTI-THREADED 
CRT. OTHERWISE UNPREDICTABLE BEHAVIOR, INCLUDING CRASHES, CAN OCCUR.

2. Set the correct include path, as shown below in “Additional Include Directories.”

Set the Include Paths
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Examples for setting include paths:

$(OH_SDK_BASE)\include Main include directory for the HD library.
$(OH_SDK_BASE)\utilities\include Include directory for utilities.

Setting the include path as indicated above will enable the developer to include header files as follows:

#include <HD/hd.h>

#include <HDU/hduVector.h>

#include <GL/glut.h>

3. Add the appropriate library modules as shown below in “Additional Dependencies.”

Set Additional Library Modules

All OpenHaptics builds should include hd.lib; applications that use the utility library should add hdu.lib.

hd.lib HDAPI library
HDAPI library HDU library (HD Utilities)
snapconstraints.lib Library that implements haptic interface constraints
glut32.lib OpenGL Utility Toolkit
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4. Make sure the linker paths are set correctly on the “Additional Library Directories” line so that the library files can be found when 
your application links.

As for the header file include paths, the library directories will use the OH_SDK_BASE environment variable. In general VisualStudio 
will automatically set the PlatformName to be one of Win32 or x64 and the ConfigurationName to be either Release or Debug. 
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MICROSOFT WIN32 VERSUS CONSOLE APPLICATIONS
When creating a new Visual Studio C++ 2005 project from scratch, it is important to choose between a console application and a Win32 
project. In the QuickHaptics examples shown in Chapter 2, “QuickHaptics micro API Programming”, GLUT applications should be built 
as Win 32 Console Applications, while those that use the Win32 API should be Win32 Projects.

Finally, note that when creating a New Project, be sure to select “Empty project” in the Additional options section
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DESIGN OF TYPICAL HDAPI PROGRAM
The following diagram shows a typical flow chart of an HDAPI program for rendering virtual objects.

HDAPI Program Flow
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7 7 HDAPI PROGRAMMING

This chapter contains the following sections:

HAPTIC DEVICE OPERATIONS 85
HAPTIC FRAMES 86
SCHEDULER OPERATIONS 86
STATE 88
CALIBRATION INTERFACE 90
FORCE/TORQUE CONTROL 92
ERROR REPORTING AND HANDLING 94
CLEANUP 95
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HAPTIC DEVICE OPERATIONS
Haptic device operations include all operations that are associated with getting and setting state. Device operations should exclusively 
be performed within the servo loop by use of the scheduler callbacks. Directly making calls to getting state, starting and ending frames, 
enabling and disabling capabilities, etc. within the application is not thread safe and will typically result in an error. These calls can be 
made safely in the application, but only when the scheduler is not running. 

Initialization
Both the device and scheduler require initialization before use. Devices are identified by their name, which is a readable string found in 
the “Geomagic Touch Setup” control panel under “Geomagic”. Typically, if there is only one device, that will be named “Default Device.” 
The first calls in an HDAPI application then are usually for device initialization:

HHD hHD = hdInitDevice(HD_DEFAULT_DEVICE);

Devices are calibrated after they are initialized. Some Touch devices require manual input for calibration since they need a hardware 
reset of the encoders. Refer to “Calibration Interface” on page 92 for more information on different types of calibration and how to 
perform calibration during runtime. An example of how to perform the latter is available in Examples/HD/console.

Devices are initialized with forces set to off for safety. The next command in initialization is to enable forces:

hdEnable(HD_FORCE_OUTPUT);

Note that the forces do not actually become enabled, however, until the scheduler is started.

hdStartScheduler();

If multiple devices are used, each needs to be initialized separately. However, there is only one scheduler so it just needs to be started 
once. hdStartScheduler() starts the scheduler and should be the last call in initialization. Asynchronous calls should be scheduled 
before this so that they begin executing as soon as the scheduler is turned on.

Current Device
The HDAPI has a concept of a current device, which is the device against which all device-specific calls are made.

hdMakeCurrentDevice(hHD);

If multiple devices are used, the devices need to take turns being current in order to have operations targeted at them. For the case of 
a single device, hdMakeCurrentDevice() does not ever need to be called.

Device Capabilities
Some device features are capabilities that can be toggled on or off. With the exception of HD_FORCE_OUTPUT, capabilities should 
not be changed unless the developer is well aware and intentional about the outcome, since most capabilities are related to device 
and user safety. Capabilities are set using hdEnable() and hdDisable(), and the current setting of a capability can be queried using 
hdIsEnabled().
if (!hdIsEnabled(HD_FORCE_OUTPUT))

{

 hdEnable(HD_FORCE_OUTPUT);

}

As with all calls involving device state, enable and disable calls should be made from the scheduler thread through a scheduler 
callback.
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HAPTIC FRAMES
Haptic frames define a scope within which the device state is guaranteed to be consistent. Frames are bracketed by hdBeginFrame() 
and hdEndFrame() statements. At the start of the frame, the device state is updated and stored for use in that frame so that all state 
queries in the frame reflects a snapshot of that data. At the end of the frame, new state such as forces is written out to the device. Calls 
to get last information such as last position yield information from the previous frame.

Most haptics operations should be run within a frame. Calling operations within a frame ensures consistency for the data being used 
because state remains the same within the frame. Getting state outside a frame typically returns the state from the last frame. Setting 
state outside a frame typically results in an error.

Each scheduler tick should ordinarily have up to only one frame per device. Frames for different devices can be nested. The developer 
can disable the one frame per tick per device limit by disabling the HD_ONE_FRAME_LIMIT capability, but this is not generally 
recommended because some devices may not function properly when more than one frame is used per scheduler tick.

Frames can be interwoven when used with multiple devices. However, note that each call to hdBeginFrame() makes the associated 
device active.

HHD id1, id2;

…

hdBeginFrame(id1);

hdBeginFrame(id2);

...

hdEndFrame(id1);

hdEndFrame(id2);

An alternate way to manage device state is to call hlCheckEvents() instead of using hlBegin/EndFrame(). In addition to checking for 
events, hlCheckEvents() updates the device state and last information just as using hlBegin/EndFrame does. For example, consider 
a scene with a static sphere and a graphics cursor representation such as a typical Hello Sphere application. The traditional paradigm 
of managing the scene is to call hlBegin/EndFrame() periodically and respecify the sphere each time. This also updates the device 
state, so that the position of the graphics cursor is maintained. An alternative approach is to just call hlCheckEvents() periodically. 
This updates the device state so that the position of the graphics cursor can be maintained, so it saves the application from having to 
respecify the shape once it’s created.

SCHEDULER OPERATIONS
The scheduler allows for calls to be run in the scheduler thread. Since the device needs to send force updates at a very high rate—
typically 1000Hz— the scheduler manages a high priority thread. If the developer needs to make queries or change state, he should 
do so within this loop; otherwise, since state is constantly changing, it is typically unsafe for the application to query or set state. For 
example, the user should not be querying data that is being changed at scheduler rates; variables should not be shared between the 
two threads. The user should access variables that are modified by the haptics thread only by using a scheduler callback.

A callback’s prototype is of the form:

HDCallbackCode HDCALLBACK DeviceStateCallback

     (void *pUserData);

The return value can be either: 

HD_CALLBACK_DONE or HD_CALLBACK_CONTINUE. 

Callbacks can be set to run either once or multiple times, depending on the callback’s return value. If the return value requests for 
the callback to continue, it is rescheduled and run again during the next scheduler tick. Otherwise it is taken off the scheduler and 
considered complete, and control is returned to the calling thread in the case of synchronous operations.

// client data declaration 

struct DeviceDisplayState

{

    HDdouble position[3];

HDdouble force[3];

}

// usage of the above client data, within a simple callback. 

HDCallbackCode HDCALLBACK DeviceStateCallback

(void *pUserData)
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{

 DeviceDisplayState *pDisplayState = 

  static_cast<DeviceDisplayState *>(pUserData);

    hdGetDoublev(HD_CURRENT_POSITION,

     pDisplayState->position);

     

 hdGetDoublev(HD_CURRENT_FORCE,

      pDisplayState->force);

   // execute this only once

 return HD_CALLBACK_DONE;

}

Scheduler calls are either of two varieties -- asynchronous and synchronous. Synchronous calls only return after they are completed, so 
the application thread waits for a synchronous call before continuing. Asynchronous calls return immediately after being scheduled. 

Synchronous Calls
Synchronous calls are primarily used for getting a snapshot of the state of the scheduler for the application. For example, if the 
application needs to query position or button state, or any other variable or state that the scheduler is changing, it should do so using a 
synchronous call. As an example:

// get the current position of end-effector

DeviceDisplayState state;

hdScheduleSynchronous(DeviceStateCallback,

                      &state,

                      HD_MIN_SCHEDULER_PRIORITY);

Asynchronous Calls
Asynchronous calls are often the best mechanism for managing the haptics loop. For example, an asynchronous callback can persist in 
the scheduler to represent a haptics effect: during each iteration, the callback applies the effect to the device. As an example:

HDCallbackCode HDCALLBACK CoulombCallback(void *data)

{

    HHD hHD = hdGetCurrentDevice();

    hdBeginFrame(hHD);

    HDdouble pos[3];

   

    //retrieve the position of the end-effector.

    hdGetDoublev(HD_CURRENT_POSITION,pos);

    HDdouble force[3];

    // given the position, calculate a force

    forceField(pos, force);

// set the force to the device
    hdSetDoublev(HD_CURRENT_FORCE, force);
 
    // flush the force
    hdEndFrame(hHD);

    // run at every servo loop tick.
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    return HD_CALLBACK_CONTINUE;
}
hdScheduleAsynchronous(AForceSettingCallback,
        (void*)0,
          HD_DEFAULT_SCHEDULER_PRIORITY);

The asynchronous callback scheduling function returns a handle that can be used in the future to perform operations on the callback. 
These operations include unscheduling the callback—i.e. forcing it to terminate—or blocking until its completion (see hdWaitForCom-
pletion() in the Open Haptics API Reference).

HDSchedulerHandle calibrationHandle =
 hdScheduleAsynchronous  (aCallback,
          (void*)0,
                        HD_MIN_SCHEDULER_PRIORITY);       hdStopScheduler();
hdUnschedule(calibrationHandle);

Callbacks are scheduled with a priority, which determines what order they are run in the scheduler. For every scheduler tick, each 
callback is always executed. The order the callbacks are executed depends on the priority; highest priority items are run before lowest. 
Operations with equal priority are executed in arbitrary order.
Only one scheduler thread ever runs, regardless of the number of devices. If there are multiple devices, they all share the same sched-
uler thread.

STATE

Get State
Device state and other information can be retrieved through the use of the hdGet family of functions, for example, hdGetDoublev(), 
hdGetIntegerv(). These all require a valid parameter type, and either a single return address or an array. It is the caller’s responsibility 
to ensure that the size of the return array is as large as the number of return values for the function.

Not all functions support parameters of all argument types. If an invalid type is used, then an HD_INVALID_INPUT_TYPE error is 
generated. For example, 

HD_DEVICE_MODEL_TYPE requires a string and should only be called with hdGetString().
CURRENT and LAST state refer to state that either exists in the frame in which the query was made, or the previous frame. If a call to 
CURRENT or LAST state is made outside a frame, then those are treated as if they were made within the previous frame; for example,. 
HD_CURRENT_FORCE will return the force that was set in the previous frame, and HD_LAST_FORCE will return the force that was 
set in the frame before that one.

Force output parameters such as HD_CURRENT_FORCE, 

HD_CURRENT_TORQUE and HD_CURRENT_MOTOR_DAC_VALUES will return whatever value the user set for each during the 
frame. The current state of these force output parameters is automatically set to zero at the beginning of each frame.

The following examples illustrate various functions to get state:

HDint buttonState;

HDstring vendor;

hduVector3Dd position;

HDfloat velocity[3];

HDdouble transform[16];

hdGetIntegerv(HD_CURRENT_BUTTONS,&buttonState);

hdGetString(HD_DEVICE_VENDOR,vendor);

hdGetDoublev(HD_CURRENT_POSITION,position);

hdGetFloatv(HD_CURRENT_VELOCITY,velocity);

hdGetDoublev(HD_LAST_ENDPOINT_TRANSFORM,transform);

Calls to getting state should generally be run within the scheduler thread and within a haptics frame.
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Set State
Setting certain parameters can change the characteristics of some safety behaviors or command forces to the device. Setting state 
should always be done within a begin/end frame. Mixing of Cartesian forces or torques with motor DAC values is presently not 
supported. For example, calling hdSetDoublev() on HD_CURRENT_FORCE and 

HD_CURRENT_MOTOR_DAC_VALUES will result in an error. 

The caller is responsible for passing in the correct number of parameters. Not all parameters support all types; if an invalid type is used, 
then an 

HD_INVALID_INPUT_TYPE error is generated. See the Open Haptics API Reference for more information.

The following illustrates some typical uses of setting state:

HDdouble force[3] = {0.5, 0.0, 1.0}; 

hdSetDoublev(HD_CURRENT_FORCE,force);

HDfloat rampRate = .5;

hdSetFloatv(HD_FORCE_RAMPING_RATE,&rampRate);

Note that forces are not actually sent to the device until the end of the frame. Setting the same state twice will replace the first with the 
second. For example, if the developer wishes to accumulate several difference forces, he can either accumulate the resultant force in a 
private variable, or can use hdGet()/hdSet() repeatedly to accumulate the force in the HD_CURRENT_FORCE storage.

Synchronization of State
The scheduler provides state synchronization capabilities between threads. For example, consider a custom state that needs to be 
updated at servo loop rates and is accessed and modified from another thread such as the graphics thread. One instance may be 
a dynamics simulation that updates the position of objects according to some equation of motion run in the servo loop thread. The 
positions will be changing frequently, and the graphics redraw functions will occasionally access those positions and use them to draw 
the objects in the scene. During the graphics redraw, the state needs to be consistent since the graphics thread runs at a considerably 
lower rate than the servo loop thread. For example, if the graphics thread were to access the instantaneous position of the object twice, 
even in a single short routine, it is likely that the two positions would be different.

In the example below, the position will likely have changed between the two times it is queried.

HDCallbackCode positionUpdateCallback(void *pUserData)

{

 hduVector3Dd *position = (hduVector3Dd *)pUserData;

 hdGetDoublev(HD_CURRENT_POSITION,*position);

 return HD_CALLBACK_CONTINUE;

}

void func()

{

   hduVector3Dd position;

   hdScheduleAsynchronous(positionUpdateCallback,

                          position,

                          HD_DEFAULT_SCHEDULER_PRIORITY);

   hduVector3Dd pos1 = position;

   hduVector3Dd pos2 = position;

 /* This assertion will likely fail. */

   assert(pos1 == pos2); 

}
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CALIBRATION INTERFACE
Calibration allows the device to maintain an accurate idea of its physical position. For example, before calibration is called, a device 
might think that its arm is in the center of the workspace whereas the arm is actually off to one side. There are a few different methods 
for performing calibration:

Types of Calibration
Hardware reset of encoders:

 In this form of calibration, the user manually places the unit into a reset position and calls the calibration routine. For the Touch devices, 
the reset position is such that all links are orthogonal. This typically only needs to be performed once when the unit is plugged in 
and the calibration will persist until the unit is unplugged or another hardware reset is performed. Examples of devices that support 
hardware reset include all Touch X models.

Inkwell calibration:
 In this form of calibration, the user puts the gimbal into a fixture, which constrains both its position and orientation, and calls the 
calibration routine. The scheduler typically needs to be running for this form of calibration to succeed. This calibration persists from 
session to session. Examples of inkwell calibration devices include the Geomagic Touch haptic device.

Auto calibration: 
In auto calibration, the device internally uses mechanisms to update its calibration as the unit is moved around. This style also supports 
partial calibration where information about one or more axes is obtained such that calibration can be performed along those axes. This 
calibration persists from session to session. Examples of auto calibration devices include the Geomagic Touch X haptic device.

Querying Calibration
Since each device type has a different form of calibration, the type of calibration supported can be queried through getting HD_
CALIBRATION_STYLE. For encoder reset and inkwell calibration, the user should be prompted to put the unit into the appropriate 
position and hdUpdateCalibration() should be called once. For auto calibration, the calibration should be periodically checked with 
hdCheckCalibration() and updated through hdUpdateCalibration() if the calibration check indicates that the calibration needs an 
update through the HD_CALIBRATION_NEEDS_UPDATE return value.

NOTE Devices can also be calibrated through running Geomagic Touch Diagnostic, a diagnostic utility installed with GTDD 
and available from either Start>Geomagic or within the <Geomagic install directory>/Geomagic Touch Device Drivers.

When to Calibrate
Since calibration may cause the device position to jump, calibration should ordinarily be performed with some force checking, or 
disabling of forces. Otherwise, for example, calibration might cause the device to jump into a position where a large force would be 
commanded in response (such as the inside of an object).

Calling Calibration
First, the user should choose a calibration style from a list of supported styles, because some devices may support multiple types of 
calibration.

HDint supportedCalibrationStyles;

 

hdGetIntegerv(HD_CALIBRATION_STYLE, 

    &supportedCalibrationStyles);

if (supportedCalibrationStyles & 

 HD_CALIBRATION_ENCODER_RESET)

{

   calibrationStyleSupported = true;

}

if (supportedCalibrationStyles & HD_CALIBRATION_INKWELL)

{

   calibrationStyleInkwellSupported = true;

}

if (supportedCalibrationStyles & HD_CALIBRATION_AUTO)

{
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   calibrationStyleAutoSupported = true;

}

Next, define callbacks that will check the calibration as follows:

HDCallbackCode CalibrationStatusCallback

      (void *pUserData)

{

    HDenum *pStatus = (HDenum *) pUserData;

    hdBeginFrame(hdGetCurrentDevice());

    *pStatus = hdCheckCalibration();

    hdEndFrame(hdGetCurrentDevice());

    return HD_CALLBACK_DONE;

}

An example of a callback that will update the calibration (in cases where manual input is not required, i.e. calibration style is not inkwell) 
is:

HDCallbackCode UpdateCalibrationCallback

     (void *pUserData)

{

    HDenum *calibrationStyle = (HDint *) pUserData;

    if (hdCheckCalibration() == 

       HD_CALIBRATION_NEEDS_UPDATE)

    {

        hdUpdateCalibration(*calibrationStyle);

    }

    return HD_CALLBACK_DONE;

}



3D Systems, Inc. 94

FORCE/TORQUE CONTROL
This feature gives access to lower level joint-space control of the haptic device. Joint torque control of haptic devices is essential for 
implementing compensation algorithms for friction/gravity, custom feedback control, haptic tele-operation, and so on.

Haptic Device Cartesian Space
Workspace coordinates for all haptic devices are specified in the Cartesian coordinate system. By default, the positive X axis points 
to the right of the Touch, parallel to the front; the positive Y axis points up; and the positive Z axis points “out” (that is, toward the user 
when the Touch is used in the normal way).

Cartesian Device Space for the Phantom 1.5 6DOF

Touch (Phantom) Joint Space
Joint 1, Joint 2, and Joint 3 are the base joints that contribute to the Touch’s (Phantom’s) X, Y, and Z forces.

Base Joint Space for the Phantom 1.5 6DOF
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Joint 4, Joint 5, and Joint 6 are the gimbal joints that contribute to the Touch’s (Phantom’s) 6DOF yaw, pitch, and roll torques, 
respectively.

Gimbal Joint Space for the Phantom 1.5 6DOF

Force/Torque Control Parameters
The following tables summarize force/torque control parameters in OpenHaptics 2.0 and newly added parameters in OpenHaptics 
3.3.0.

Table: 6-1: Force/Torque Control Parameters in OpenHaptics 2.0

Device Type Parameter Applies To Coordination System Units
3DOF/6DOF HD_CURRENT_FORCE Base Cartesian N (Fx, Fy, Fz)
6DOF HD_CURRENT_TORQUE Gimbals Cartesian mNm (Tx, Ty, Tz)

3DOF/6DOF HD_CURRENT_MOTOR_
DAC_VALUES Base & gimbals Joint space

-32768 to 32768 

(M1, M2, M3...)
 
NOTE The parameters HD_CURRENT_TORQUE and HD_CURRENT_MOTOR_DAC_VALUES have been deprecated in the 
OpenHaptics 3.3.0 and the new joint torque commands described below should be used instead.

Table: 6-2: New Joint Torque Parameters in OpenHaptics 3.3.0

Device Type Parameter Applies To Coordination System Units

3DOF/6DOF HD_CURRENT_JOINT_
TORQUE Base joints Joint space mNm (TJ1, TJ2, TJ3)

6DOF HD_CURRENT_GIMBAL_
TORQUE Gimbal joints Joint space mNm (TJ4, TJ5, TJ6)

 
The OpenHaptics 3.3.0 HDAPI parameters HD_CURRENT_JOINT_TORQUE and HD_CURRENT_GIMBAL_TORQUE provide full 
control of the Touch in the joint space domain.

HD_CURRENT_JOINT_TORQUE parameter is used to set current torque as a joint coordinated vector for the first three joints of any 
3DOF or 6DOF Touch and HD_CURRENT_GIMBAL_TORQUE is used to set current gimbal torque as a joint coordinated vector for the 
three gimbal joints of the 6DOF Touch.

CAUTION Note that setting the value of HD_CURRENT_MOTOR_DAC_VALUES will override either HD_CURRENT_JOINT_
TORQUE or HD_CURRENT_GIMBAL_TORQUE for the Touch. Therefore, these parameters should not be used together. 
Similarly, setting the value of HD_CURRENT_JOINT_TORQUE will override the HD_CURRENT_FORCE value, although setting 
HD_CURRENT_GIMBAL_TORQUE will not affect the value of HD_CURRENT_FORCE.
All the safety behaviors of the device are enabled for these joint torque commands. Therefore, disabling the forces using hdDisable 
(HD_FORCE_OUTPUT) will disable sending joint torques to the device. 
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Note that joint torques are not actually sent to the device until the end of the frame. Setting the same state twice will replace the first 
with the second. For example, if the developer wishes to accumulate several different joint torques, he or she can either accumulate the 
resultant joint torque in a private variable, or can use hdGet()/hdSet() repeatedly to accumulate the joint torque in the HD_CURRENT_
JOINT_TORQUE / HD_CURRENT_GIMBAL_TORQUE storage.

Syntax and Examples
The Cartesian end effects base motor forces are specified in OpenHaptics HDAPI code by using hdSetFloatv() or hdSetDoublev() 
with the first parameter set to HD_CURRENT_FORCE. For example:

HDfloat baseForce[3];

baseForce[0] = force_x;

baseForce[1] = force_y;

baseForce[2] = force_z; 

hdSetFloatv(HD_CURRENT_FORCE, baseForce);

Joint torques for gimbal motors are specified in OpenHaptics HDAPI code by using hdSetFloatv() or hdSetDoublev() with the first 
parameter set to HD_CURRENT_GIMBAL_TORQUE. For example:

HDfloat gimbalTorque[3];

gimbalTorque[0] = torque_yaw;

gimbalTorque[1] = torque_pitch;

gimbalTorque[2] = torque_roll; 

hdSetFloatv(HD_CURRENT_GIMBAL_TORQUE, torque); 

The following illustrates a typical use of setting all joint torque values on a 6DOF device:

HDdouble baseTorque[3] = {100, 250, 200}; //Base Torque in mNm

hdSetDoublev(HD_CURRENT_JOINT_TORQUE, baseTorque);

HDdouble gimbalTorque[3] = {30, 65, 0.0}; //Gimbal Torque in mNm

hdSetDoublev(HD_CURRENT_GIMBAL_TORQUE, gimbalTorque);

DAC Values for Motors
The HD_CURRENT_MOTOR_DAC_VALUES parameter directly sets 16-bit DAC units, which in turn set voltages for each motor of the 
Touch. 

WARNING UNLESS YOU HAVE A THOROUGH WORKING KNOWLEDGE OF THE TOUCH, THE HD_CURRENT_MOTOR_DAC_VALUES 
PARAMETER SHOULD NOT BE USED. THIS PARAMETER HAS BEEN DEPRECATED IN OPENHAPTICS 3.3.0 DUE TO SAFETY 
REASONS. THE JOINT CONTROL COMMANDS DESCRIBED IN “FORCE/TORQUE CONTROL” ON PAGE 94 SHOULD BE USED 
INSTEAD.

ERROR REPORTING AND HANDLING
Generated errors are put on an error stack and thus can be retrieved in reverse order, for example, most recent first. If the error stack is 
empty, then asking for an error will return one that has HD_SUCCESS as its error code. Error information contains three fields. 

1. An error code, from the definitions file.

2. An internal error code. This is the raw error code generated by the device call, it is typically used to query for additional support 
from the device vendor. 

3. The device ID that generated the call, this is useful for error handling debugging in a system that contains multiple devices.

Errors are not always generated by the immediate call beforehand. For example, if the user asks for an error in his main application 
thread, that error might have come from an asynchronous call that was running in the scheduler thread.

Errors can occur from any number of different causes. Some are a result of programmatic fault, such as attempting to call a function 
with improper argument type. Others are device faults such as if a device cannot be initialized. Still others may result from usage 
patterns such as temperature and force errors. It is not necessary to check for errors after each call;

however, the error stack should be queried periodically, particularly to allow the application to catch errors that need user notification 
such as temperature and device initialization failures.
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an example:

/* Check if an error occurred while attempting to render the force */

if (HD_DEVICE_ERROR(error = hdGetError()))

{

 if (hduIsForceError(&error))

 {

  bRenderForce = FALSE;

 }

 else if (hduIsSchedulerError(&error))

   {

       return HD_CALLBACK_DONE;

 }

}

CLEANUP
Before application exit, the scheduler should be stopped and all scheduler operations terminated. Callbacks can be terminated either 
through the application calling hdUnschedule(), or through the callback itself knowing to return 

HD_CALLBACK_DONE. Finally, the device should be disabled. The following shows a typical cleanup sequence:

hdStopScheduler();

hdUnschedule(scheduleCallbackHandle);

hdDisableDevice(hdGetCurrentDevice());
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9 8 HLAPI OVERVIEW

The HLAPI is a high-level C API for haptic rendering patterned after the OpenGL API for graphic rendering. The HLAPI allows 
programmers to specify geometric primitives such as triangles, lines and points along with haptic material properties such as stiffness 
and friction. The haptic rendering engine uses this information along with data read from the haptic device to calculate the appropriate 
forces to send to the haptic device.

Like OpenGL, HLAPI is based on a state machine. Most HLAPI commands modify the rendering state and rendering state may also be 
queried using the API. State includes information such as the current haptic material settings, transformations and rendering modes. 
In addition to state set by a user’s program, the HLAPI state includes the state of the haptic device such as its position and orientation. 
The API also provides the ability to set event callback functions which the rendering engine will call whenever certain events, such as 
touching a shape or pressing the stylus button on the haptic device, occur.

This chapter includes the following sections:

GENERATING FORCES 99
LEVERAGING OPENGL 99
PROXY RENDERING 100
DESIGN OF TYPICAL HLAPI PROGRAM 100
THREADING 101
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GENERATING FORCES
There are three ways to generate haptic feedback using the HLAPI:

• Shape rendering allows users to specify geometric primitives which the rendering engine uses to automatically compute the appropriate 
reaction force to simulate touching the surfaces defined by the geometry. The HLAPI allows users to specify geometry using OpenGL 
commands as well as through custom shape callbacks.

• Effect rendering allows users to specify global force functions which are not easily defined by geometry. While shapes only generate 
forces when the haptic device is in contact with the shape geometry, effects may generate forces at any haptic device position. HLAPI 
includes a number of standard force effects such as viscosity and springs as well as the ability to specify custom force functions.

• Direct proxy rendering allows the user to set a desired position and orientation for the haptic device and the rendering engine will auto-
matically send the appropriate forces to the haptic device to move it towards the desired position.

LEVERAGING OPENGL
The primary mechanism for specifying the geometry of shapes with the HLAPI is to use OpenGL commands. This allows for a broad 
range of ways to specify geometry as well as for reuse of OpenGL code in already existing programs.

The HLAPI is able to haptically render geometry specified using the full range of OpenGL commands for specifying geometry. This 
includes primitives such as points, lines and polygons specified using glBegin() as well as geometry stored in display lists and vertex 
arrays. Capturing geometry from OpenGL is done in two different ways: depth buffer shapes and feedback buffer shapes. 

With depth buffer shapes, OpenGL rendering commands are used to render geometry to the depth buffer. The HLAPI reads the image 
from the depth buffer and uses it to determine the appropriate geometry to be used to generate forces for the haptic device. 

With feedback buffer shapes, geometry rendered using OpenGL is captured in the OpenGL feedback buffer. The HLAPI then reads the 
geometry out of the feedback buffer and computes the appropriate forces to send to the haptic device.

A program may also set transforms using OpenGL calls such glTranslate(), glRotate(), and glScale() and the HLAPI will apply 
the transforms set by these commands to geometric primitives for haptics rendering. The API does this by querying portions of the 
transform state from the OpenGL state machine.

PROXY RENDERING
Haptic rendering of geometry is done using the proxy method. The proxy (also known as the “SCP” or “god-object”) is a point which 
closely follows the position of the haptic device. The position of the proxy is constrained to the outside of the surfaces of all touchable 
shapes. The haptic rendering engine continually updates the position of the proxy, attempting to move it to match the haptic device 
position, but not allowing it to move inside any shapes. While the actual position of the haptic device may be inside a shape, the proxy 
will always be outside. When not touching a shape, the proxy will always be placed at the device position, but when in contact with a 
shape the haptic device will penetrate the surface of the shape and the proxy will remain on the outside of the surface. The force sent 
to the haptic device is calculated by stretching a virtual spring-damper between the haptic device position and the proxy position.

The Proxy

The HLAPI automatically maintains the appropriate proxy position for the geometry specified. Programs may query the current proxy 
position from API state in order to draw a 3D cursor or to know the point on a shape which the user is touching.
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DESIGN OF TYPICAL HLAPI PROGRAM
A typical HLAPI program has the following structure:

HLAPI Program Flow

First, the program sets up OpenGL by creating a graphics rendering context and tying it to a window. Then it initializes the HLAPI by 
creating a haptics rendering context and tying it to a haptic device. Then the program specifies how the physical coordinates of the 
haptic device should be mapped into the coordinate space used by the graphics. This mapping is used by the HLAPI to map geometry 
specified in the graphics space to the physical workspace of the haptic device. Next, the application renders the scene graphics using 
OpenGL. Then the program processes any events generated by the haptics rendering engine such as contact with a shape or a click of 
the stylus button. Then the haptics are rendered, usually by executing nearly the same code as for rendering the graphics, but capturing 
the geometry as a depth or feedback buffer shape. In addition to rendering scene geometry, a 3D cursor is rendered at the proxy 
position reported by the HLAPI. Finally, the rendering loop continues by rendering the graphics again.
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THREADING
Because haptic rendering requires more frequent updates than typical graphics applications, the HLAPI rendering engine creates, in 
addition to the main application thread, two additional threads that it uses for haptic rendering: the servo thread and the collision thread. 
The main application thread in a typical HLAPI program is referred to as the “client thread”. The client thread is the thread in which the 
HLAPI rendering context is created and in which HLAPI functions are called by client programs. Typical users of the HLAPI will write 
code that runs in their client thread and will not need to know about the servo or collision threads, although there are cases where 
advanced users will want to write code that runs in one of these threads.

Servo Thread
The servo thread handles direct communication with the haptic device. It reads the device position and orientation and updates the 
force sent to the device at a high rate (usually 1000 hz). This thread runs at an elevated priority in order to maintain stable haptic 
rendering. The servo thread is similar to the servo thread in a typical HDAPI program although unlike with HDAPI, HLAPI hides the 
servo thread from the user (with the exception of custom force effects).

Collision Thread
The collision thread is responsible for determining which geometric primitives are in contact with the proxy. It runs at a rate of 100 hz 
which is slower than the servo thread but faster than the client thread. The collision thread finds which of the shapes specified in the 
client thread are in contact with the proxy and generates simple local approximations of those shapes. These local approximations are 
sent to the servo thread which uses them to update the force to the haptic device. Using simple local features allows the servo thread to 
maintain a high update rate even if the number of geometric primitives provided from the client thread is high.
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9 9 HLAPI PROGRAMMING

This chapter contains the following sections:

DEVICE SETUP 103
RENDERING CONTEXTS 103
HAPTIC FRAMES 103
RENDERING SHAPES 104
MAPPING HAPTIC DEVICE TO GRAPHICS SCENE 110
DRAWING A 3D CURSOR 113
MATERIAL PROPERTIES 114
SURFACE CONSTRAINTS 115
PUSHING AND POPPING ATTRIBUTES 116
EFFECTS 117
EVENTS 118
CALIBRATION 120
DYNAMIC OBJECTS 121
DIRECT PROXY RENDERING 122
SCP DEPTH OF PENETRATION 123
MULTIPLE DEVICES 123
EXTENDING HLAPI 124
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DEVICE SETUP
Device setup for HLAPI is similar to HDAPI. The first step is to initialize the device by name using hdInitDevice(). The device name is 
a readable string label that can be modified in the Geomagic Touch Setup control panel.

hHD = hdInitDevice(HD_DEFAULT_DEVICE);

if (HD_DEVICE_ERROR(hdGetError()))

{

 exit(-1);

}

The second step is to create a context for the initialized device using hlCreateContext(). The context maintains the state that persists 
between frame intervals and is used for haptic rendering. 

hHLRC = hlCreateContext(hHD);

The third step is to make the context current by calling hlMakeCurrent().
hlMakeCurrent(hHLRC);

RENDERING CONTEXTS
In HLAPI, all commands require that there be an active rendering context. The rendering context contains the current haptic rendering 
state and serves as a target for all HLAPI commands. 

Calling hlMakeCurrent() on a rendering context, sets the context as the active context for the current thread. Like in OpenGL, all 
HLAPI commands made from this thread will operate on the active context. For this thread, it is possible to use multiple rendering 
contexts in the same thread by making additional calls to hlMakeCurrent() to switch the active context. It is also possible to make calls 
to the same rendering context from multiple threads, but as in OpenGL, the HLAPI routines are not thread safe, so only one thread 
may make calls to the shared rendering context at a time. To ensure thread safety, a rendering context should only be active in one 
thread at a time. This can be done by using a critical section or mutex to synchronize calls to hlMakeCurrent() for the shared context.c 

HAPTIC FRAMES
All haptic rendering commands in the HLAPI must be used inside a haptic frame. A haptic frame is bracketed at the start and end by 
calls to hlBeginFrame() and hlEndFrame() respectively. Explicitly marking the beginning and end of the haptic frame allows the API to 
properly synchronize changes to the state and to the rendering engine.

In a typical program, there will be one haptic rendering frame for each graphic rendering frame. Note that this is very different from 
a typical HDAPI program in which the haptics framerate is 1000 hz and the graphics framerate is much slower (usually 30-60 hz). In 
HLAPI programs, often the haptics and graphics are updated one right after the other, or even simultaneously. Generally, the haptics 
and graphics rendering calls occur in the same thread since they both access the same geometry to render. However, there is no 
requirement that haptics and graphics framerates match nor that the haptics and graphics be updated in the same thread.

In a typical program, hlBeginFrame() is called at the top of the rendering loop, so that any objects in the scene that depend on the 
haptic device or proxy state have the most current data. hlEndFrame() is called at the end of the rendering loop to flush the changes 
to the haptic rendering engine at the same time that the graphics are flushed so that two will be in synch.
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Haptic Frame in HLAPI Program

At the start of the haptic frame, hlBeginFrame() samples the current haptic rendering state from the haptic rendering thread. 
hlEndFrame() will commit the rendered haptic frame and will synchronously resolve any dynamic changes by updating the proxy 
position. 

In addition to updating haptic rendering state available to the client thread, hlBeginFrame() also updates the world coordinate 
reference frame used by the haptic rendering engine. By default, hlBeginFrame() samples the current GL_MODELVIEW_MATRIX from 
OpenGL to provide a world coordinate space for the entire haptic frame. All positions, vectors and transforms queried through hlGet*() 
or hlCacheGet*() in the client or collision threads will be transformed into that world coordinate space. Typically, the GL_MODELVIEW_
MATRIX contains just the world to view transform at the beginning of a render pass.

All HLAPI commands that query haptic device or proxy state and are called between the same begin/end frame pair will report the 
same results. For example, multiple calls to query the haptic device position during a single frame will all report the same exact position, 
the position at the time hlBeginFrame() was called, even if the actual position of the haptic device has changed since the start of 
the frame. This is done to avoid problems where, for example, during a frame, the program moves multiple objects in a scene by the 
amount that the haptic device moved. In that situation, reporting different haptic device movements at different times during the frame 
would cause the objects to be moved out of synch.

At the end of the haptic frame, all changes made to the state, such as the specification of shapes and force effects, are flushed to the 
haptic rendering engine. The hlEndFrame() call is, therefore, similar to doing a glFlush() followed by swapping the buffers in a double 
buffered OpenGL program. This allows a program to make multiple changes to the scene being rendered during a frame and have the 
changes all occur simultaneously at the end of the frame.

RENDERING SHAPES
Shape rendering in HLAPI is used to render surfaces and solid objects. Shapes may be created out of multiple geometric primitives 
such as lines, points and polygons. Custom shape types may also be created by specifying callback functions. Shape rendering is done 
using the proxy method as described in “Proxy Rendering” on page 99.
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Begin/End Shape
Shape geometry is specified using OpenGL commands bracketed by calls to hlBeginShape() and hlEndShape(). HLAPI captures the 
geometry specified by the OpenGL commands, and uses this geometry to perform haptic rendering. For example, the following code 
renders a 1x2 rectangle in the XY plane as an HLAPI shape:

// start the haptic shape

hlBeginShape(HL_SHAPE_DEPTH_BUFFER, myShapeId);)

glBegin(GL_POLYGON);

glVertex3f(0, 0, 0);

glVertex3f(1, 0, 0);

glVertex3f(1, 2, 0);

glVertex3f(0, 2, 0);

glEnd();

 

// end the haptic shape

hlEndShape();

Shape Identifiers
Every shape must have a unique integer identifier. The rendering engine uses this identifier to detect changes to a shape from frame 
to frame so that it may render the correct forces for the shape as it changes. Before rendering a shape, allocate a new shape identifier 
using the routine hlGenShapes().
HLuint myShapeId;

myShapeId = hlGenShapes(1);

This identifier should be passed to hlBeginShape(), every time your shape is rendered. When you no longer need to render the shape, 
you should free the shape identifier by calling hlDeleteShapes(), so that others may use it.

Shape Types
There are two different ways that the HLAPI captures geometry from OpenGL commands: using the depth buffer and using the 
feedback buffer. When rendering a shape, you must specify which method to use for your shape by passing either 

HL_SHAPE_DEPTH_BUFFER or HL_SHAPE_FEEDBACK_BUFFER.

Depth Buffer
Depth buffer shapes use the OpenGL depth buffer to capture shape geometry. While the feedback buffer shape stores points, line 
segments and polygons to use for haptic rendering, the depth buffer shape does haptic rendering using an image read from the depth 
buffer. When hlEndShape() is called, the API reads an image from the OpenGL depth buffer. This image is then passed to the collision 
thread and is used for collisions with the proxy. Any OpenGL commands that modify the depth buffer will be captured as part of the 
shape and rendered haptically. This includes any routines that generate polygons or other primitives that modify the depth buffer as well 
as any shaders or textures that modify the OpenGL depth buffer.

Since the depth buffer does not store geometric primitives, it cannot be used to render points and lines using the HL_CONSTRAINT 
touch model. It can however, be used to render polygons and polygon meshes as constraints.

Because rendering to the depth buffer turns the 3D geometry into an image, it is important that the image be rendered using the correct 
viewpoint. You will only be able to feel the portions of the geometry that are viewable from the viewpoint used to render the image. 
This means that you cannot feel the backside of an object or any undercuts. By default, depth buffer shapes are rendered using the 
current OpenGL viewing parameters. In general, this is the same view that is used for graphics rendering. In this case, using a depth 
buffer shape, you will only be able to feel the portions of the shape that you can see. However, if you enable the haptic camera view 
optimization, the HLAPI will automatically adjust the OpenGL viewing parameters based on the motion and mapping of the haptic 
device in the scene. This will enable you to feel portions of the shape, even if they are not visible on the screen. This works well for 
most shapes although there may be noticeable discontinuities when feeling shapes with deep, narrow grooves or tunnels. For such 
shapes, it is better to use a feedback buffer shape. Note that by default the haptic camera view is disabled. To enable it, call: 

hlEnable(HL_HAPTIC_CAMERA_VIEW);
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Unlike with feedback buffer shapes, depth buffer shapes may be rendered once per frame for both haptics and graphics. If haptic 
camera view is disabled, the depth buffer image needed for haptics is the same that is generated for the graphics. You can combine 
the graphics and haptics rendering by simply bracketing your existing graphics rendering code with an hlBeginShape() and an 
hlEndShape():
hlBeginFrame();

// clear color and depth buffers for new frame

// haptic rendering requires a clear depth buffer 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// combined graphic and haptic rendering pass

hlBeginShape(HL_SHAPE_DEPTH_BUFFER, myShapeId);

drawMyShape();

hlEndShape();

// swap buffers to show graphics results on screen

glutSwapBuffers(); 

// flush haptics changes

hlEndFrame();

If you are using the haptic camera view optimization, the above approach will not work, since HLAPI will change the viewing 
parameters based on the motion and mapping of the haptic device. This will cause the graphics to be rendered from this modified view. 
When using haptic camera view, or when you want your haptics and graphics rendering routines to be different, you will need to render 
the haptics and graphics separately as you would with a feedback buffer shape. The following code snippet shows how such a program 
would be structured:

hlBeginFrame();

// clear color and depth buffers for new frame

// haptic rendering requires a clear depth buffer 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// graphic rendering pass

drawMyShapeGraphic();

// swap buffers to show graphics results on screen

// do this before rendering haptics so we don’t

// get haptic camera view rendered to screen

glutSwapBuffers(); 

// haptic rendering pass - clear the depth buffer first

// so that you don’t mix in the depth buffer image

// graphics rendering

glClear(GL_DEPTH_BUFFER_BIT);

hlBeginShape(HL_SHAPE_DEPTH_BUFFER, myShapeId);

drawMyShapeHaptic();

hlEndShape();

// flush haptics changes

hlEndFrame();
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Note the placement of the calls to glClear() and to glutSwapBuffers(). Because a depth buffer shape does draw to the color and depth 
buffer (unlike a feedback buffer shape), you have to be careful to not render the view from the haptic camera to the screen and also 
to clear the depth buffer before rendering the haptics so that the depth image from the graphics does not get mixed in with that of the 
haptics.

Feedback Buffer
Feedback buffer shapes use the OpenGL feedback buffer to capture geometric primitives for haptic rendering. When you begin a 
feedback buffer shape, by calling hlBeginShape(), HLAPI automatically allocates a feedback buffer and sets the OpenGL rendering 
mode to feedback mode. When in feedback buffer mode, rather than rendering geometry to the screen, the geometric primitives that 
would be rendered are saved into the feedback buffer. All OpenGL commands that generate points, lines and polygons will be captured. 
Other OpenGL commands, such as those that set textures and materials, will be ignored. When hlEndShape() is called, the primitives 
written to the feedback buffer are saved by the haptic rendering engine and used for force computations in the haptic rendering threads.

When using the feedback buffer shapes, you should use the hlHinti() command with HL_SHAPE_FEEDBACK_BUFFER_VERTICES 
to tell the API the number of vertices that will be rendered. HLAPI uses this information to allocate memory for the feedback buffer. 
OpenGL requires that sufficient memory be allocated prior to rendering the geometry. If not enough memory is allocated, some 
geometry will be lost and HL_OUT_OF_MEMORY error will be set. It is therefore better to over allocate than it is to under allocate. If no 
hint value is specified, HLAPI will allocate space for 65536 vertices.

The following code snippet shows how to render a rectangle using a feedback buffer shape:

hlHinti(HL_SHAPE_FEEDBACK_BUFFER_VERTICES, 4);

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, myShapeId);

glBegin(GL_POLYGON);

glVertex3f(0, 0, 0);

glVertex3f(1, 0, 0);

glVertex3f(1, 2, 0);

glVertex3f(0, 2, 0);

glEnd();

hlEndShape();

The OpenGL rendering commands that may be used are not limited to direct calls to glBegin(), glEnd() and glVertex(). You may call 
any routines that generate geometric primitives, such as calling display lists, vertex arrays or glu NURB rendering functions. In many 
cases the same OpenGL calls can be made to render a shape for both graphics and haptics. In this case you can simply call your 
rendering routine twice, once for graphics rendering and once for haptics:

// graphic rendering pass

drawMyShape();

// haptic rendering pass

hlHinti(HL_SHAPE_FEEDBACK_BUFFER_VERTICES, nVertices);

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, myShapeId);

drawMyShape();

hlEndShape();

While the feedback buffer shape will capture lines and points, they will only be used for haptic rendering when the touch model is set to 
HL_CONSTRAINT. Since the haptic device proxy is modeled as a single point, it may be constrained to points, lines and polygons, but 
it may only contact polygons.

When creating a feedback buffer shape, it is important not to change the OpenGL culling settings. Specifically, you should not call 
glCullFace(), or glEnable() / glDisable() with GL_CULL_FACE in between the hlBeginShape() and hlEndShape() calls. If you do, 
you may not be able to feel parts of your shape. For example, if you have back face culling enabled you will not be able to feel any 
of the back facing polygons of your shape since OpenGL will cull them out before they can be saved in the feedback buffer. While 
these faces are not visible in graphics rendering, you may reach around the back of a shape with the haptic device to touch an area 
that you cannot see. This is an easy mistake in an HLAPI program since you often share rendering routines between the haptics and 
the graphics and it is easy to forget that for graphics rendering, you may have changed the culling settings. The HLAPI changes the 
OpenGL culling state in hlBeginShape() and restores the previous value in hlEndShape() so you do not need to change the setting 
yourself.
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The HLAPI expects that polygon meshes be reasonably well behaved. Specifically, if a mesh has even very small gaps between 
adjacent triangles, this will allow the proxy to pass through the mesh giving the user the impression that they have fallen through the 
object. In addition, meshes which are self-intersecting, non-manifold or meshes where polygons have inconsistent winding orders may 
cause fall through or other haptic artifacts.

Optimizing Shape Rendering
In graphics rendering, many optimizations, such as view frustum culling and back face culling, work by rendering only the geometry that 
is actually viewable. In haptics rendering, performance may be optimized by rendering only geometry that is actually touchable. This 
can be done by considering only geometry that is near the current proxy position. The HLAPI provides a number of ways to optimize 
haptic rendering: adaptive viewport, haptic camera view, and culling with spatial partitions. Each is described in detail below.

Adaptive Viewport
When using depth buffer shapes, performance may be improved by enabling the adaptive viewport optimization. This optimization 
limits the region of the depth buffer that is read into memory to be used for haptic rendering to the area near the current proxy position. 
The performance improvement will depend on the speed at which the graphics card is able to read the depth image from the on board 
memory of the graphics accelerator. On many graphics accelerators, reading data from the depth buffer can be very costly. 

To turn on the adaptive viewport, make the following call before calling hlBeginShape():
hlEnable(HL_ADAPTIVE_VIEWPORT);

Once this call is made, all newly created depth buffer shapes will use the adaptive viewport. To turn off the adaptive viewport call:

hlDisable(HL_ADAPTIVE_VIEWPORT);

In order to use the adaptive viewport, the scene must be redrawn regularly when the haptic device is moving, otherwise the haptic 
device may leave the region of the scene covered by the portion of the depth image that was copied. The portion of the depth image 
read is refreshed every time the shape is drawn. For normal use of the haptic device, redrawing the graphics at a normal 30-60hz 
framerate is sufficient when using adaptive viewport, however in applications where the user moves the haptic device very quickly, you 
may notice discontinuities in the force output.

Haptic Camera View
When the haptic camera view is enabled, HLAPI will automatically modify the viewing parameters used when rendering a depth buffer 
or feedback buffer shape so that only a subset of the geometry near the proxy position will be rendered. When the haptic camera view 
is enabled, HLAPI modifies the OpenGL view frustum so that only the shape geometry near the proxy position is rendered. 

For feedback buffer shapes, this can dramatically increase performance by reducing the number of geometric primitives considered for 
haptic rendering. The improvement will depend on the density of the geometry in the region around the proxy, since denser geometry 
will lead to a larger number of primitives in the haptic view frustum.

For depth buffer shapes, this offers less of a performance improvement, since once the primitives have been rendered to the depth 
buffer, the actual haptic rendering of a depth buffer image is not dependent on the number of primitives. That said, there is some 
performance benefit to considering only the geometry near the proxy when generating a depth buffer image. In addition, when using 
haptic camera view, HLAPI generates a depth buffer image that is a subset of the full depth buffer used by the graphics window so as 
with adaptive viewport, less data is read back from the depth buffer. If haptic camera view is enabled, the adaptive viewport setting is 
ignored. In addition, for depth buffer shapes, using haptic camera view allows you to feel parts of the geometry that are not viewable 
from the graphics view.

To turn on the haptic camera view, make the following call before calling hlBeginShape():
hlEnable(HL_HAPTIC_CAMERA_VIEW);

Once this call is made, all newly created depth buffer and feedback buffer shapes will use the haptic camera view. To turn off the haptic 
camera view call:

hlDisable(HL_HAPTIC_CAMERA_VIEW);

As with the adaptive viewport, in order to use the haptic camera view, the scene must be redrawn regularly when the haptic device is 
moving. Each time the shape is rendered, only the geometry near the proxy is captured, so if the haptic device moves far enough away 
from the proxy position at the time the shape was specified, there may not be any recorded geometry near the device position. This 
can lead to the shape not feeling correct and in some cases to the haptic device “kicking” when new geometry near the device position 
is finally recorded. For normal use of the haptic device, redrawing the graphics at a normal 30-60hz framerate is sufficient when using 
haptic camera, however for applications where the user moves the haptic device very quickly you may not want to use haptic camera 
view. 
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Culling with Spatial Partitions
When rendering shapes with very large numbers of primitives additional culling based on the haptic camera view is recommended. 
While the haptic camera view will cull out primitives which are not near the proxy, with a large enough number of primitives, this 
culling itself can become prohibitively expensive and lead to low framerates. By using a spatial partition such as a BSP tree, octree 
or hierarchical bounding spheres, large groups of primitives may be culled at once. HLAPI does not provide a spatial partition as 
part of the standard API because building an efficient partition is dependent on the data structures and types of data specific to each 
application. The HapticViewer sample application that comes with HLAPI provides a simple example of spatial partitioning for haptic 
rendering using a binary tree.

To perform haptic culling using a spatial partition, first you need to determine the region in space that the haptic camera view will 
consider for haptic rendering. This is simply the OpenGL view frustum that HLAPI sets as part of the call to hlBeginShape() when 
haptic camera view is enabled. This can be queried using the OpenGL glGet() functions. The viewing frustum used by the haptic 
camera view will always be based on an orthographic projection, so it will always be a box, however it will not always be axis aligned. 
Once you know the frustum box to consider, then you use your spatial partition to find the subset of geometry which is inside or partially 
inside this box. Finally, this subset of geometry should be drawn using OpenGL.

The following code snippet shows how to do this. For a full example, see the HapticViewer sample application.

hlEnable(HL_HAPTIC_CAMERA_VIEW);

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, myShapeId);

// get frustum box from OpenGL

hduVector3Dd frustumCorners[8];

getFrustum(frustumCorners);

// render only the geometry in the frustum

spatialPartition->renderOnlyInBox(frustumCorners);

hlEndShape();

The getFrustum() involves reading the viewing parameters from OpenGL and using them to reconstruct the view frustum:

void getFrustum(hduVector3Dd* frustum)

{

 // get OpenGL matrices

 GLdouble projection[16];

 GLdouble modelview[16];

 glGetDoublev(GL_PROJECTION_MATRIX, projection);

 glGetDoublev(GL_MODELVIEW_MATRIX, modelview);

 // invert modelview matrix to get model to eye  transform

 hduMatrix eyeTmodel =   

     hduMatrix(modelview).getInverse();

// invert projection matrix to clip to eye transform

 hduMatrix clipTeye =   

     hduMatrix(projection).getInverse();

 // compose the two together to get clip to model 

 // transform

 hduMatrix clipTmodel = clipTeye.multRight(eyeTmodel);

 // Compute the edges of the frustum by transforming 

 // canonical clip coordinates for the corners 

 // into eye space.

 frustum[0] = hduVector3Dd(-1, -1, -1) * clipTmodel;
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 frustum[1] = hduVector3Dd(-1, -1, 1) * clipTmodel;

 frustum[2] = hduVector3Dd( 1, -1, -1) * clipTmodel;

 frustum[3] = hduVector3Dd( 1, -1, 1) * clipTmodel; 

 frustum[4] = hduVector3Dd( 1, 1, -1) * clipTmodel;

 frustum[5] = hduVector3Dd( 1, 1, 1) * clipTmodel;

 frustum[6] = hduVector3Dd(-1, 1, -1) * clipTmodel;

 frustum[7] = hduVector3Dd(-1, 1, 1) * clipTmodel;

}

The routine renderOnlyInBox involves using the spatial partition to efficiently determine which primitives are in the box with the corners 
specified and render them. The HapticViewer sample shows an example of how this is implemented using a binary tree.

Which Shape Type Should I Use?
For large numbers of primitives, depth buffer shapes are more efficient and use less memory since the haptic rendering engine only 
needs to use the depth image for haptic rendering. The complexity of haptic rendering on a depth image is independent of the number 
of primitives used to generate the image. At the same time, for small numbers of primitives, feedback buffer shapes are more efficient 
and use less memory due to the overhead required to generate and store the depth image.

Depth buffer shapes are less accurate than feedback buffer shapes although in nearly all applications, the difference in accuracy is 
undetectable. With depth buffer shapes, the geometry is transformed into a 2D depth image before being rendered haptically, and this 
is a “lossy transformation,” particularly when the shape has undercuts that are not visible from the camera position. The haptic camera 
view attempts to minimize the undercuts by choosing an appropriate camera position, however in some cases no camera position can 
eliminate all undercuts. This is particularly difficult on shapes with deep grooves or narrow tunnels. Such shapes are best rendered as 
feedback buffer shapes.

If you are rendering lines and points to be used as constraints, you must use a feedback buffer shape since depth buffer shapes cannot 
capture points and lines.

Also note, DepthBufferShape with Haptic Camera View and HL_FRONT_AND_BACK touchable faces is not fully supported for 
dynamically changing shapes. It will work as long as you remain in contact with the shape. This will be fixed in a future release when we 
add support for multiple camera views.

MAPPING HAPTIC DEVICE TO GRAPHICS SCENE
All applications will have to determine an appropriate mapping of the haptic workspace to the graphics scene. Defining a mapping 
between the workspace and the graphic scene will describe how movement of the physical device translates to movement in the 
graphic scene.

The Haptic Workspace
The haptic workspace is the physical space reachable by the haptic device. The dimensions of the haptic workspace can be obtained 
by calling hlGetDoublev() with HL_WORKSPACE. The values returned are in millimeters.

HLdouble workspaceDims[6];

hlGetDoublev(HL_WORKSPACE, workspaceDims);

Most applications will choose to use the entire workspace. Those applications that desire to use a subset of the workspace can set the 
usable workspace by calling hlWorkspace(). The following call sets the usable workspace to be a box 160mm in X, 150 mm in Y, and 
60 mm in Z. The workspace coordinates are such that positive Z is towards the user.

hlWorkspace(-80, -80, -70, 80, 80, 20); 

// left, bottom, back, right, top, front
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Matrix Stacks
HLAPI provides two matrix stacks to define the mapping from the haptic workspace to the graphics scene. These matrix stacks are 
HL_VIEWTOUCH_MATRIX and 

HL_TOUCHWORKSPACE_MATRIX. The matrices are 4x4. The mapping from the haptic workspace to the graphic scene is defined as 
follows:

Haptic Workspace to Graphic Scene Mapping

• World coordinates are the global frame of reference for the graphics scene.

• View coordinates are the local coordinates of the camera (eye coordinates).

• Touch coordinates are the parent coordinate system of the workspace. Touch coordinates represent the basic mapping of the workspace 
to view coordinates independent of further workspace transformation.

• Workspace coordinates are the local coordinates of the haptic device.

• World-view matrix defines the transformation to the camera coordinate frame. The world-view matrix is captured when hlBeginFrame() is 
called.

• View-touch matrix defines the rotation and translation of the haptic workspace relative to view coordinates independent of the workspace 
mapping. The view-touch matrix will be the identity for most applications.

• Touch-workspace matrix defines the mapping of the workspace to view coordinates. The mapping will contain a scale to map the work-
space and a translation to orient the workspace to the target mapping in view coordinates.

The Touch-Workspace and View-Touch matrix stacks function in much the same way as matrix stacks in OpenGL. The HLAPI maintains 
a current matrix stack and all matrix functions affect the current matrix. Set the current matrix by calling hlMatrixMode() with either 
HL_VIEWTOUCH or HL_TOUCHWORKSPACE. 

Functions that affect the current matrix stack are hlPushMatrix(), hlPopMatrix(), hlLoadMatrix(), hlMultMatrix(), hlOrtho() and 
several convenience routines in hlu.

Call hlGetDoublev() with HL_VIEWTOUCH_MATRIX or 

HL_TOUCHWORKSPACE_MATRIX to retrieve the top of a matrix stack.

Touch-workspace Matrix
The purpose of the touch-workspace matrix is to define the mapping between the workspace and view coordinates. The matrix will 
contain a scale to match the size of the workspace with the target in view coordinates and a translation to orient the closest part of the 
workspace with the closest part of the target of the mapping. Most applications will only modify the touch-workspace matrix leaving the 
view-touch matrix as the identity matrix. The touch-workspace matrix functions much like the projection matrix in OpenGL.

View-touch Matrix
The purpose of the View-Touch matrix is to orient the mapped workspace to the target in view coordinates. For example an application 
may want to map the X dimension of the workspace (longest dimension) with the Z dimension of the view. To do so, manipulate the 
View-Touch matrix independent of the Touch-Workspace matrix.

Mapping
Most applications will map the workspace to view coordinates such that everything that is visible is also touchable. Other applications 
may only be interested in a portion of the viewing volume, a collection of objects, or even just a subset of a single object. The HLAPI 
provides both convenience routines for the most common mappings as well as a flexible mechanism for advanced users. All routines 
depend on the current state of workspace dimensions (HL_WORKSPACE).
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Basic Mapping
When defining the workspace mapping, the physical dimensions of the workspace must be considered. The majority of haptic 
devices will have a physical workspace that is not uniform in all dimensions. For example the Geomagic Touch device workspace has 
dimensions 160w x 120h x 70d mm.

Directly mapping such a workspace would require a non-uniform scale matrix and would result in non-uniform movement of the proxy 
in the scene. To define a uniform mapping you will have to determine how best to fit the haptic workspace about the area of interest. 
Fortunately the HLAPI provides convenience routines to define the most common workspace mappings.

Applications that need a uniform mapping of the haptic workspace to the viewable scene can use hluFitWorkspace() to define a 
uniform workspace mapping such that workspace completely encloses the view volume. Call hluFitWorkspace() with the projection 
matrix that defines the viewing volume:

hlMatrixMode(HL_TOUCHWORKSPACE);

hluFitWorkspace(projectionMatrix);

The constructed matrix is multiplied with top of the current matrix stack.

Applications may only be interested in a portion of the scene. This may be defined as a portion of the viewing volume, a single object 
or a collection of objects. Call hluFitWorkspaceBox() with the desired extents and a matrix that transforms the extents into view 
coordinates. If the extents are in view coordinates, the matrix will be the identity. If the extents represent the bounding box of an object, 
the matrix will be the model-view matrix used to draw the object.

HLdouble minPoint[3], maxPoint[3];

hluFitWorkspaceBox(modelMatrix, minPoint, maxPoint);

hluFitWorkspaceBox() will define a uniform mapping of the haptic workspace such that the workspace encloses a bounding box 
defined by minPoint and maxPoint where modelMatrix is the matrix that transforms the points defined by minPoint and maxPoint to view 
coordinates.

Advanced Mapping
Uniform vs. Non-Uniform Mapping

Both hluFitWorkspace() and hluFitWorkspaceBox() define a uniform mapping of the workspace to view coordinates. While this 
allows for uniform proxy movement in the scene, it does give up a portion of the haptic workspace to allow for a uniform scale. This is 
especially true if the scene uses a wide field-of-view camera.If your application is such that using the entire haptic workspace is more 
important than uniform proxy movement or if non-uniform proxy movement will be imperceptible for your application, you may want to 
use a non-uniform workspace scale.

hluFitWorkpaceNonUniform() and hluFitWorkspaceBoxNonUniform() are the functional non-uniform equivalents of 
hluFitWorkspace() and hluFitWorkspaceBox(). In fact, in order to make scene design simpler, the QuickHaptics micro API uses 
hluFitWorkpaceNonUniform() by default, see the figure “Default Clipping Planes for World Space” on page 11.

Touch-Workspace Matrix
As stated, the touch-workspace matrix defines the basic mapping between the workspace and view coordinates. Although the hlu 
functions are flexible, application developers may require more control when defining the mapping. You may consider generating an 
intermediary projection matrix solely for the purpose of workspace mapping. Instead, hlOrtho() provides more direct manipulation of 
the workspace mapping. hlOrtho() defines a non-uniform mapping such that the haptic workspace will be a fit box defined in view 
coordinates. The following call will map the workspace to a box in view coordinates centered about the origin 20 units on a side:

hlOrtho(-10.0, 10,0, -10.0, 10.0, -10.0, 10.0); 

// left, bottom, near, right, top far

View-Touch Matrix
The view-touch matrix provides further control of the workspace-view coordinate mapping. The view-touch matrix can be modified 
independently of the touch-workspace matrix to affect change in workspace mapping. An application that desires the optimal workspace 
mapping based on a new view-touch matrix must refit the workspace after the view-touch matrix changes. For example, an application 
may want to map the X-axis of the device (longest dimension) to the Z-axis in view coordinates. The function hluFeelFrom() provides 
the mechanism to translate and orient the workspace to the view. The following code will reorient the haptic workspace:

// workspace looking from right

HLdouble handx = 1, handy = 0, handz = 0;

// at scene origin

HLdouble centerx = 0, centery = 0, centerz = 0;
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// up vector

HLdouble upx = 0; upy = 1;upz = 0;

hluFeelFrom(handx, handy, handz, centerx, centery, 

    centerz, upx, upy, upz);

hluFitWorkpace(projectionMatrix):

DRAWING A 3D CURSOR
The application user will often need to visualize the proxy position relative to scene objects in order to interact with the virtual 
environment. A 3D cursor is the graphic representation of the proxy in the scene. To draw a 3D cursor you will need to get the 3D world 
coordinate position of the proxy and determine a size for the 3D cursor. The proxy position can be obtained by calling hlGetDoublev() 
with HL_PROXY_POSITION:

Hldouble proxyPosition[3];

hlGetDoublev(HL_PROXY_POSITION, proxyPosition);

You will need to provide a scale for the 3D cursor as it will be represented by a 3D object in the scene. The function 
hluScreenToModelScale() will return the scale to use when drawing the 3D cursor such that it will occupy a single screen pixel when 
the cursor is at the near plane of the viewing frustum.

For 3D cursor objects that are not rotation invariant, you can either obtain the cursor rotation in world coordinates by calling 
hlGetDoublev() with HL_PROXY_ROTATION or the cursor transformation from the haptic workspace to world coordinates by calling 
hlGetDoublev() with HL_PROXY_TRANSFORM.

The following code snippet shows drawing a 3D cursor:

// cursor size in pixels at the near plane

#define CURSOR_SCALE_PIXELS 20

GLdouble modelview[16]; 

GLdouble projection[16];

GLint viewport[4];

glGetDoublev(GL_MODELVIEW_MATRIX, modelview);

glGetDoublev(GL_PROJECTION_MATRIX, projection);

glGetIntegerv(GL_VIEWPORT, viewport);

glPushMatrix();

// get proxy position in world coordinates

HLdouble proxyPosition[3];

hlGetDoublev(HL_PROXY_POSITION, proxyPosition);

// transform to draw cursor in world coordinates

glTranslatef(proxyPosition[0], proxyPosition[1], 

  proxyPosition[2]);

// compute cursor scale

HLdouble gCursorScale;

gCursorScale = hluScreenToModelScale(modelview, projection, viewport);

gCursorScale *= CURSOR_SIZE_PIXELS;
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glScaled(gCursorScale, gCursorScale, gCursorScale);

drawSphere();

glPopMatrix();

MATERIAL PROPERTIES
Material properties control the tactile properties of the surface. This is analogous to visual properties—visually, material properties 
include such identifiers as color, glow, specular highlights; haptically, material properties include such identifiers as stiffness and friction. 

Material properties are specified using hlMaterial(). They can be applied to either the front, back, or both faces of an object.

Stiffness
Stiffness is set by calling hlMaterial() with the HL_STIFFNESS property.

hlMaterialf(HL_FRONT_AND_BACK, HL_STIFFNESS, 0.7);

Stiffness defines how hard an object feels. Mathematically, stiffness determines the rate that the resistance force increases as the 
device attempts to penetrate the surface. Forces are generated using the Hooke’s Law equation F=kx, where “k” is the stiffness, or 
spring constant and “x” is the vector representing penetration depth. A higher stiffness value thus will result in greater resistance when 
the device pushes against the surface.

Real world hard surfaces, which contain high stiffness, include metal or glass. Soft surfaces, with low stiffness, include Jell-O® and 
rubber.

Stiffness may be any value between 0 and 1, where 0 represents a surface with no resistance and 1 represents the stiffest surface the 
haptic device is capable of rendering stably. 

Setting stiffness too high may cause instability. The stiffness force is intended to resist penetration into the object, but an exceptionally 
high stiffness may cause the device to kick or buzz. For example, if the stiffness is set to an unreasonably high number, then the device 
would experience a strong kick in the opposite direction whenever it even lightly touched the surface.

Damping
Damping is set by calling hlMaterial() with the HL_DAMPING property.

hlMaterialf(HL_FRONT_AND_BACK, HL_DAMPING, 0.1);

Damping adds a velocity-dependent property to an object. Damping is governed by the equation F=kv, where “k” is the damping 
coefficient and “v” is the velocity of the device. 

One real world example of an object with high damping is corn syrup. The more forceful your contact, the more resistance the corn 
syrup provides.

Damping may range from 0 to 1 where 0 means no damping and 1 means the most damping the haptic device is capable of rendering.

Setting damping too high can cause instability and oscillation. The purpose of damping is to provide some retardation to the device’s 
velocity; however, if the value is too high, then the reaction force could instead send the device in the opposite direction of its current 
motion. Then in the next iteration, the damping force would again send the device in the opposite direction, etc. This oscillation will 
manifest as buzzing.

Friction
Friction is set by calling hlMaterial() with either the HL_STATIC_FRICTION or 

HL_DYNAMIC_FRICTION property.

hlMaterialf(HL_FRONT_AND_BACK, HL_STATIC_FRICTION, 0.2);

hlMaterialf(HL_FRONT_AND_BACK, HL_DYNAMIC_FRICTION, 

     0.3);

Friction provides resistance to lateral motion on an object. Friction is classified into two categories: static and dynamic (sometimes also 
designated “stick-slip friction”). Static friction is the friction experienced when the device initially begins motion starting from rest along 
the surface. Dynamic friction is the friction experienced as the device is moving along the surface. 

For example, if you put your finger on ice, then slide your finger along the surface, the ice feels initially sticky, then feels smooth after 
your finger has started to move. Ice is an example of an object that has high static friction but low dynamic friction. Rubber, on the other 
hand, has both high static and dynamic friction. Steel can have both low static and dynamic friction.
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Popthrough
Popthrough is set by calling hlMaterial() with the HL_POPTHROUGH property.

hlMaterialf(HL_FRONT_AND_BACK, HL_POPTHROUGH, 0.5);

Popthrough defines how hard the device must push against the surface of an object before it pops through (or “pushes through”) to 
the other side. A value of 0 or false turns popthrough off, so that the surface does not allow penetration. A positive value controls the 
popthrough threshold, where a higher value means that the device must push harder before popping through. The popthrough value 
roughly corresponds to a ratio of the device’s maximum nominal force threshold. 

This is not an attribute that has a real-world physical counterpart because surfaces in real life do not allow an object to push through 
them without themselves being destroyed. A fictitous example might be a sheet of paper that a user pushes against until he tears a hole 
through it, where that hole then restores itself instantaneously such that the user ends up on the other side of the paper and the paper 
itself is unchanged.

Popthrough has many types of useful application. An application might set a surface to be touchable from the front and back, then set 
a popthrough threshold such that the user can push through the surface to feel its back side, then pop out of the surface to feel its front 
side. For example, the user may want to at times interact with either the outside or inside surface of a sphere without having to explicitly 
toggle which side is touchable. Another application might have some infinite plane that’s used as a guide, where the user can get 
through the plane by pushing with enough force on it. The alternative would be to force the user to explicitly turn off the plane whenever 
he was interested in interacting with the space below it.

Setting the popthrough value too low may make it difficult to touch the surface without pushing through to the other side. Setting the 
popthrough value too high may mean the user will experience a maximum force error before reaching the popthrough value.

SURFACE CONSTRAINTS
By default, shapes in the HLAPI are rendered so that the proxy may not pass through them, giving the impression of a solid object. 
This is referred to as contact rendering mode. The API also supports a constraint rendering mode where the proxy is constrained to the 
surface of a shape giving the impression of a magnetic object to which the haptic device position sticks.

To render a shape as a constraint, use the function hlTouchModel() with the HL_CONSTRAINT parameter. Once the touch model is 
set to constraint, all newly specified shapes will be rendered as constraints. To render other shapes as standard contact shapes, call 
hlTouchModel() again with HL_CONTACT parameter.

Snap Distance
Snap distance is set by calling hlTouchModel() with the HL_SNAP_DISTANCE property.

hlTouchModel(HL_CONSTRAINT);

hlTouchModelf(HL_SNAP_DISTANCE, 1.5);

Objects that behave as constraints will force the device to their surface whenever the device is within a certain proximity of their 
surface. This proximity is the snap distance. Beyond the proximity, those constraints will be inactive and thus provide no force 
contributions. Once the device enters the proximity and for as long as it stays within that distance, the object will confine it to its surface. 
It is said that the device is “stuck” to the surface of the constraint.

A simple example of a constraint is a line constraint. Whenever the device is within the snap distance of the line, the line projects the 
proxy position to itself and confines it there. Forces are generated proportional to the distance between the device position and the 
nearest point on the line. Once that distance exceeds the snap distance, the proxy is freed and the line constraint no longer operates on 
the device.

The following code snippet renders a triangle in contact mode with its edges rendered as constraint line segments. The effect is that 
you can slide along the triangle and the haptic device snaps onto an edge when you get near it.

hlBeginFrame();

hduVector3Dd triangleVerts[3];

triangleVerts[0].set(0, -50, 0);   // in world space

triangleVerts[1].set(-50, 0, 0);

triangleVerts[2].set(50, 0, 0);

// draw edges as constraint

hlTouchModelf(HL_SNAP_DISTANCE, 1.5);

hlTouchModel(HL_CONSTRAINT);

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, edgesShapeId);

glBegin(GL_LINE_LOOP);
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for (int i = 0; i < 3; ++i)

 glVertex3dv(triangleVerts[i]);

glEnd();

hlEndShape();

// draw face as contact

hlTouchModel(HL_CONTACT);

hlBeginShape(HL_SHAPE_FEEDBACK_BUFFER, faceShapeId);

glBegin(GL_TRIANGLES);

glNormal3f(0, 0, 1);

for (int i = 0; i < 3; ++i)

 glVertex3dv(triangleVerts[i]);

glEnd();

hlEndShape();

hlEndFrame();

Combining Constraints
When multiple constraints are specified and the proxy is within the snap distance of more than one constraint, HLAPI computes the 
constrained proxy position using the following rules:

If the constraints do not overlap or intersect:
The proxy will be constrained to the geometry, within the specified snap distance, that is closest to the current proxy. This means 
that once the proxy is constrained to a primitive, it will remain constrained to that primitive, and will not become constrained to any 
other primitive until the distance between the primitive and the haptic device position becomes greater than the snap distance for that 
primitive.

If the constraints overlap or intersect:
If the overlapping or intersecting constraints are of different dimensionality, such as a three dimensional surface and a one 
dimensional line or a two dimensional surface and a one dimensional point, HLAPI will constrain the proxy first to the primitive of higher 
dimension and then if the newly constrained proxy is within snap distance of the lower dimension constraint, it will further constrain the 
proxy to that constraint. This allows for you to move freely along a higher dimensional constraint such as a surface or a line and then be 
snapped to a lower dimensional constraint within the higher dimensional constraint.

If the overlapping or intersecting constraints are of the same dimensionality the proxy will be constrained to whichever primitive 
is closest to the current proxy. If two constraints are of equal distance to the proxy, the proxy will be constrained to whichever is closest 
to the haptic device position. The proxy is therefore allowed to move from one constraint to another if both constraints intersect. 
This allows you to build compound constraints out of groups of primitives of the same dimension that feel continuous such as curve 
constraints made up of connected line segments or surfaces made up of connected triangles.

PUSHING AND POPPING ATTRIBUTES
Attributes can be pushed and popped off the attribute stack the same

way that matrices are handled with hlPushMatrix and hlPopMatrix. 

hlPushAttrib(HL_TOUCH_BIT);

hlPopAttrib();

Pushing and popping attributes is handled much the same way as in openGL, where the developer can specify which attributes to push. 
The developer could push all attributes, but typically he’ll only be interested in saving a subset of information. A typical example is if 
the user wants to save off the material properties of the state; he can then push those attributes onto the stack, define new parameters 
for whatever object he’s creating, then pop the attribute stack to restore the previous values. hlPopAttribute restores only whatever 
attributes were pushed by the last hlPushAttrib. 

See the Open Haptics API Reference for a list of valid attributes. The developer can push an individual set of attributes or OR the 
attribute types together to push multiple ones.
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EFFECTS
Effects provide a way to render forces to the haptic device to simulate arbitrary sensations. Force effects are typically used to generate 
ambient sensations, like drag, inertia or gravity. These sensations are ambient because they apply throughout the workspace. Force 
effects can also be used to generate transient sensations, like an impulse. Force effects can be started and stopped or triggered in 
response to events, like touching a shape or pressing a button on the haptic device. Unlike shape rendering, effects will persist until 
stopped or until the duration has elapsed for trigger effects.

There are a number of built-in effect types. HLAPI presently supports the following generic force effect types: constant, spring, viscous, 
and friction. In addition, the force effect facility supports a callback effect type, which allows for custom force effect rendering.

Effects can either be persistent or run for a predefined period of time. This behavior is controlled by the HL function used to invoke the 
effect. A persistent effect is invoked using hlStartEffect(). The force effect will continue to render until hlStopEffect() is called with the 
corresponding effect identifier. Effect identifiers are allocated using hlGenEffects() and are deallocated using hlDeleteEffects(). The 
following example demonstrates starting and stopping a force effect:

/* Start an ambient friction effect */

HLuint friction = hlGenEffects(1);

hlBeginFrame();

hlEffectd(HL_EFFECT_PROPERTY_GAIN, 0.2);

hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 0.5);

hlStartEffect(HL_EFFECT_FRICTION, friction);

hlEndFrame();

/* Execute main loop of program */

/* Stop the ambient friction effect */

hlBeginFrame();

hlStopEffect(friction);

hlEndFrame();

hlDeleteEffects(friction, 1);

Effects can also be invoked as temporal effects, such that they render for a set period of time. This is controlled by invoking the effect 
using the HL function hlTriggerEffect(). Triggering an effect differs from the start/stop approach since it doesn’t require an effect 
identifier and will automatically stop when the effect duration has elapsed. The following example demonstrates triggering a force effect:

static const HDdouble direction[3] = { 0, 0, 1 };

static const HDdouble duration = 100; /* ms */

// Trigger an impulse by commanding a force with a

// direction and magnitude for a small duration 

hlEffectd(HL_EFFECT_PROPERTY_DURATION, duration);

hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 1.0);

hlEffectdv(HL_EFFECT_PROPERTY_DIRECTION, direction);

hlTriggerEffect(HL_EFFECT_CONSTANT);

Effects can be controlled by one or more of the following properties: 

HL_EFFECT_PROPERTY_GAIN

HL_EFFECT_PROPERTY_MAGNITUDE 

HL_EFFECT_PROPERTY_FREQUENCY

HL_EFFECT_PROPERTY_DURATION 

HL_EFFECT_PROPERTY_POSITION 

HL_EFFECT_PROPERTY_DIRECTION

These properties can be set by using the hlEffect*() functions, which take as arguments the property type and either a scalar or vector, 
depending on the property. Effect properties that will be referenced by an effect are sampled from the HL context state at the time 
hlStartEffect() or hlTriggerEffect() is called. Please refer to the Open Haptics API Reference for information about the use of each 
property for the built-in effects.
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HLAPI allows for multiple force effects to be rendered at the same time. All of the effects will be combined to produce one force to 
be rendered to the device. Also note that the built-in effects utilize the proxy position as input, since this allows for stable effect force 
rendering while feeling shapes. Therefore, it is possible to contact a shape while an ambient friction effect is active or to be constrained 
to a shape while resisting a spring effect.

Effects can be updated in two ways. First, the effect can be stopped, new effect parameters specified via hlEffect commands, an then 
started again.

hlStopEffect(frictionEffect)

hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 1.0)

hlStartEffect(FrictionEffect);

Effect parameters can be updated in place while the effect is running. This is accomplished through hlUpdateEffect(), which takes as 
an argument an effect that is already running or defined. The current effect state is copied into the specified effect, i.e. the same way 
the current effect state is applied when the developer call hlStartEffect().
hlEffect(HL_EFFECT_PROPERTY_MAGNITURE, 1.0);

hlUpdateEffect(frictioEffect);

EVENTS
The HLAPI allows client programs to be informed via callback functions when various events occur during haptic rendering. You may 
pass a pointer to a function in your program to the API along with the name of the event you are interested in. That function will be 
called when the event occurs. The events you can subscribe to include touching a shape, motion of the haptic device and pushing the 
button on the stylus of the haptic device.

Event Callbacks
To set a callback for an event, use the function hlAddEventCallback() as follows:

hlAddEventCallback(HL_EVENT_TOUCH, HL_OBJECT_ANY,

      HL_CLIENT_THREAD, 

    &touchShapeCallback, NULL);

This tells HLAPI to call the function touchShapeCallback() when any shape is touched. You may register as many callbacks as you 
want for the same event. The callback function should be defined as follows:

void HLCALLBACK touchShapeCallback(HLenum event,

         HLuint object, 

         HLenum thread, 

         HLcache *cache, 

         void *userdata)

{

 hduVector3Dd proxy;

 std::cout << “Touched a Shape” << std::endl;

 hlCacheGetDoublev(cache, HL_PROXY_POSITION, proxy);

 std::cout << “Proxy position is: “ << proxy <<   

     std::endl;

}

This simple callback prints out the position of the proxy when the touch event occurred. 

The cache argument that is passed to the callback function may be used with hlCacheGet*() functions in order to query the cached 
haptic rendering state from the time the event occurs. Events may occur in the haptic rendering thread and be handled asynchronously 
in the client thread. This can lead to delay between the time the actual event occurred and when the callback functioned is invoked. As 
a result, it is often useful to have access to a snapshot of the haptic rendering state from the point in time when the event occurred.

For client thread events, in order to have your callback function called, you must call the function hlCheckEvents() on a regular 
basis. Most programs will call this function once during each haptic rendering frame, although it may be called at any time from 
the client thread. hlCheckEvents() will call the callback functions for all registered events which have occurred since the last time 
hlCheckEvents() was called. Note that collision thread events will dispatch automatically, provided a valid haptic device handle is 
assigned to the context.



3D Systems, Inc. 119

Types of Events
The HLAPI allows you to register callbacks for the following events:

Touch and Untouch
Touch events occur when the user touches a shape with the haptic device. Specifically, a touch event occurs when the haptic rendering 
engine determines that the proxy comes in contact with a shape that was rendered in the last frame. Touch events are only reported 
when the proxy first comes in contact with the shape; they are NOT continually reported every frame that the proxy stays in contact with 
the shape.

Similarly, untouch events occur when the user stops touching a shape with the haptic device. Specifically, an untouch event occurs 
when the proxy ceases to be in contact with a shape. 

Touch and untouch event callbacks may be registered for a specific shape or they may be registered for any shape. If you pass the id of 
a shape as the second argument to hlAddEventCallback(), the callback will only be invoked when that shape is touched or untouched. 
If you pass HL_OBJECT_ANY instead, then the callback will be invoked when any shape is touched/untouched.

Motion
Motion events are triggered when the proxy position or orientation changes. The amount of motion required to trigger the event may be 
changed by setting the state variables 

HL_EVENT_MOTION_LINEAR_TOLERANCE and 

HL_EVENT_MOTION_ANGULAR_TOLERANCE. These values may be set using the function hlEventd() and they may be queried 
using the function hlGetDoublev(). Motion events are triggered when the distance between the current proxy position and the position 
of the proxy the last time the motion event was triggered exceeds one of these thresholds. The motion event can be registered for the 
collision thread to allow for a faster sampling rate of proxy motion. To subscribe to a motion use HL_EVENT_MOTION.

Button
Button events are triggered when the user presses one of the buttons on the haptic device. Separate events are triggered for button 
down and button up. For haptic devices with two buttons, there are separate button up and button down events for each of the two 
buttons. For haptic devices with one button, or for the first button on a two button device, subscribe to button events using HL_
EVENT1_BUTTON_DOWN and 

HL_EVENT1_BUTTON_UP. For the second button on a two button device use 

HL_EVENT2_BUTTON_DOWN and HL_EVENT2_BUTTON_DOWN.

Calibration
Special events are triggered when the haptic device requires calibration data or a calibration update. See “Calibration” on page 120.

Events for Specific Shapes
By passing a shape identifier to hlAddEventCallback() for motion and button events, your callback will only be called if the event 
occurs while the shape with that identifier is being touched. If you wish your callback to be called on any shape or even when no 
shape is being touched, pass HL_OBJECT_ANY as the shape identifier. By specifying a shape id for a button event, your callback will 
be invoked when clicking the button on that shape. This can be used for example to implement the selection of shapes in the scene. 
By specifying a shape id for a motion callback, the callback will be invoked when dragging the haptic device along the surface of that 
shape. This can be used, for example, to implement painting on a shape.

Events and Threading
Most of the time event callbacks are executed in the client thread but there are cases where you may need to have an event callback 
executed in one of the haptic rendering threads. 

Client Thread Events
To have your callback invoked in the client thread, pass HL_CLIENT_THREAD as the third argument to hlAddEventCallback(). 
Callback functions registered to be called in the client thread will be invoked when your program calls hlCheckEvents(). Be aware 
that you may only specify new shapes and effects as part of an event callback if it is called in between an hlBeginFrame() and an 
hlEndFrame(). Although it is legal to call hlCheckEvents outside of a begin/end frame pair, one way to ensure that it is safe to specify 
shapes and effects in your client thread event callback is to call hlCheckEvents() in between the hlBeginFrame() and hlEndFrame() 
calls.
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Collision Thread Events
Because events occur in the haptic rendering threads, there is generally some latency between the occurrence of the event and when 
the registered event callbacks are invoked in the client thread. While this latency is not noticeable for changes to graphic rendering, 
it can be noticeable for certain changes to the haptic rendering. For example, if you wish to place a haptic constraint at the current 
position of the proxy when a button event occurs, by the time the client thread callback is invoked the proxy will have moved from the 
position that it had at the time the event occurred. Placing the constraint at this time can cause a haptic jolt or kick since the position of 
the proxy may have moved away from the location of the constraint. Other examples where client thread callbacks may not be sufficient 
include drawing and painting programs which require more frequently updated position data than the client thread updates can provide 
running at the 30-60hz graphics frame rate. By requesting collision thread motion callbacks, you would receive position data at the 
100hz rate of the collision thread.

Be aware that most of the HLAPI routines are not thread safe so you must be careful which API routines you call in your collision thread 
event callback. You may not call hlBeginFrame() nor may you specify any shapes or effects in a collision thread callback. The only API 
routines you may call are hlCacheGet() in order to query the cached state at the time of the event and the hlProxy() routines to directly 
set the position of the proxy as well hlEnable() and hlDisable() with the HL_PROXY_RESOLUTION argument. The ability to disable 
proxy rendering and directly set the proxy position is useful in the case where you wish to place a constraint at the proxy position. By 
disabling proxy resolution, you can fix the proxy at the same position until you are able to place the constraint in the client thread. This 
prevents the haptic kick that could occur if the proxy were allowed to move before the constraint was placed. The shape manipulation 
sample program (see the <OpenHaptics install directory>/examples) provides an example of how to do this.

CALIBRATION
Calibration is a necessary step in using a haptic device in order to accurately obtain positions and accurately render forces. The 
calibration requirements vary from device to device, but HLAPI but HLAPI abstracts this by offering a convenient event callback 
interface coupled with a catchall function for updating calibration. 

Adding calibration support to a program involves registering for two primary event callbacks to monitor the calibration state:

HL_EVENT_CALIBRATION_INPUT, and

HL_EVENT_CALIBRATION_UPDATE

The HL_EVENT_CALIBRATION_INPUT event notifies the program that the device requires calibration input from the user. The input 
required from the user is particular to the haptic device being used. For instance, for the Geomagic Touch, the user should be prompted 
to place the stylus into the flashing inkwell. Once calibration input has been obtained, a secondary event named 

HL_EVENT_CALIBRATION_UPDATE will be reported. This notifies the program that the device is ready for calibration update as soon 
as the program is ready to command it. The program can then choose to either perform the calibration or to defer it. The most typical 
reason for deferring calibration is if the user is in the middle of performing an operation that would be interrupted if the position of the 
device were to instantaneously change.

A calibration update can be invoked by calling the hlUpdateCalibration() function. This flushes the calibration through HLAPI, and will 
reset the haptic rendering pipeline to avoid force rendering artifacts due to the discontinuity in device position.

The following is an example of handling the calibration events:

/* Register event callbacks for calibration */

hlAddEventCallback(HL_EVENT_CALIBRATION_UPDATE,

      HL_OBJECT_ANY, HL_CLIENT_THREAD,  

     &calibrationCallback, NULL);            

hlAddEventCallback(HL_EVENT_CALIBRATION_INPUT, 

      HL_OBJECT_ANY, HL_CLIENT_THREAD,

      &calibrationCallback, NULL);            

/* This function will be invoked when a calibration event occurs. This handler notifies the user to either provide calibration input or 
that calibration is about to be updated. This callback will be invoked as a result of calling hlCheckEvents() within the main loop of the 
program. */

void HLCALLBACK calibrationCallback(HLenum event, 

                  HLuint object, 

                  HLenum thread, 

                  HLcache *cache, 

                  void *userdata)

{
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  if (event == HL_EVENT_CALIBRATION_UPDATE)

  {

    std::cout << “Device requires calibration update...”   << std::endl;

    hlUpdateCalibration();    

  }

  else if (event == HL_EVENT_CALIBRATION_INPUT)

  {

    std::cout << “Device requires calibration input...”     

 << std::endl;

  }

}

DYNAMIC OBJECTS
Objects which move or change shape dynamically as you touch them present unique challenges for haptic rendering. The basic proxy 
rendering algorithm assumes that the shape you are touching is static while the proxy and haptic device move. The algorithm assumes 
that the current proxy is always constrained to be outside of the object. It then is able to move the proxy towards the haptic device 
position while keeping it outside the surface. When a shape changes or moves, the proxy may cross the surface and end up inside the 
object. When this happens, it feels as if the haptic device fell through the surface.

The HLAPI haptic rendering algorithms are able to solve this problem if the rendering engine can detect when a shape has moved 
or changed. When the rendering engine knows that a particular shape has moved or changed, it is able to detect that the proxy has 
crossed the surface and is then able to move the proxy back out of the dynamic shape. Since the calculations involved in updating the 
proxy position are complex, the haptic rendering engine will only apply them to shapes that it recognizes as dynamic.

If an object’s position, orientation or scale changes but the shape of the object remains the same, the HLAPI will automatically 
recognize that the object has changed and will correctly update the proxy. HLAPI will determine if the transform of a shape has changed 
since the last haptic frame by reading the OpenGL matrix stacks when hlBeginShape() is called. It compares the matrices that it 
reads with those that it read for the same shape during the last frame. In order for this to work correctly, any OpenGL transformation 
commands that will be changing the shapes transform from frame to frame must be made before the call to hlBeginShape(), otherwise 
HLAPI will not detect that the transformation has changed. For example, the following code will not allow HLAPI to detect the transform 
change:

// draws snowman made up of three spheres

// at position specified

void drawSnowman(const double* pos)

{

 hlBeginShape(HL_SHAPE_DEPTH_BUFFER, myShapeId);

 glPushMatrix();

 // will cause slipthrough if pos changes from frame

 // to frame!!!

 glTranslatef(pos[0], pos[1], pos[2]);

 glutSolidSphere(2.5, 30, 30);

 glTranslatef(0, 2.5, 0);

 glutSolidSphere(2, 30, 30);

 glTranslatef(0, 2, 0);

 glutSolidSphere(1, 30, 30);

 glPopMatrix();

 hlEndShape();

}
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To fix the problem simply move the transform above the call to hlBeginShape():
// draws snowman made up of three spheres

// at position specified

void drawSnowman(const double* pos)

{

 glPushMatrix();

 

 // ok to do this before hlBeginShape

 glTranslatef(pos[0], pos[1], pos[2]);

 hlBeginShape(HL_SHAPE_DEPTH_BUFFER, myShapeId);

 glutSolidSphere(2.5, 30, 30);

 glTranslatef(0, 2.5, 0); // ok, won’t change    

         // between frames 

 glutSolidSphere(2, 30, 30);

 glTranslatef(0, 2, 0);   // ok, won’t change 

        // between frames 

 glutSolidSphere(1, 30, 30);

 glPopMatrix();

 hlEndShape();

}

For shapes where the transformation does not change but the geometry itself does, the API cannot detect the change so you must 
inform the API that the shape has changed. This is the case with surfaces which deform. To tell the HLAPI that the geometry of the 
shape will change, set the dynamic geometry hint to true before drawing the shape by calling:

hlHintb(HL_SHAPE_DYNAMIC_SURFACE_CHANGE, HL_TRUE);

After specifying the dynamic shape, it is a good idea to turn the hint off before drawing any non-dynamic shapes to avoid the extra 
overhead of the dynamic proxy updates for shapes that are not really dynamic.

The dynamic shape hint is not supported when using depth buffer shapes that are touchable from both the front and back faces in 
conjunction with the haptic camera view. In this situation, HLAPI is not able to correctly move the proxy to the dynamic surface.

DIRECT PROXY RENDERING
Rather than specifying shapes which will influence the position of the proxy, HLAPI allows you set the proxy position and orientation 
directly. In order to directly set the proxy, you must first disable proxy resolution by calling:

hlDisable(HL_PROXY_RESOLUTION);

This will stop the haptic rendering engine from updating the proxy position itself. The proxy position will remain at its current location 
until it is explicitly moved by the user. HLAPI will ignore any shapes that are specified when proxy resolution is disabled. To set the 
proxy position or orientation call:

HLdouble positionVector[3] = {1.0, 2.0, 3.0};

hlProxydv(HL_PROXY_POSITION, positionVector);

HLdouble orientationQuaternion[4] = { 0.7071, 0, 0, 0.7071};

hlProxydv(HL_PROXY_ROTATION, orientationQuaternion);
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Direct proxy setting can be used if you wish to perform your own collision detection between the proxy and the geometry in the scene. 
The SimpleRigidBody sample program shows an example of this. It uses direct proxy rendering to implement virtual coupling between 
the haptic device and a body in a dynamic situation. It implements a basic rigid body simulation and sets the proxy position and 
orientation to follow one of the bodies in the simulation. In addition, a spring force from the haptic device position and orientation is 
applied to the body in the simulation. The result is that the body in the simulation acts as the proxy. It moves to follow the haptic device 
position but its motion is restricted by collisions with other bodies in the simulation and these restrictions are fed back to the user by the 
fact that the proxy position follows the body.

Direct proxy setting is also useful in collision thread events. If you place a new surface or constraint at the proxy position in a client 
thread event callback, you will get force discontinuities. This happens because of the latency between the haptic rendering and client 
threads. However, you cannot create new shapes in a collision thread event handler. Instead, you can disable proxy resolution in the 
collision thread event callback which will lock the proxy in place until the next client thread frame at which point you can create the 
shape. The ShapeManipulation sample program uses this technique when placing the axis snap constraint (see the <OpenHaptics 
Install Directory>/examples).

SCP DEPTH OF PENETRATION
For some applications, it is necessary to get the surface contact point (SCP) depth of penetration of the haptic device in order to 
customize the forces as a function of depth of penetration into the object. In medical simulations, this can be a useful technique to drive 
needle applications or palpation simulations.

The depth of penetration can be queried in OpenHaptics 3.3.0 using the hlGet parameter HL_DEPTH_OF_PENETRATION. This 
parameter gives the depth of penetration of the device into the current object being touched by the proxy in world coordinates. 

The following illustrates how to query the depth of penetration using hlGet() function:

HLdouble depth_penetrated;

hlGetDoublev(HL_DEPTH_OF_PENETRATION, &depth_penetrated);

SCP Depth of Penetration

Device depth 
penetration

MULTIPLE DEVICES
An HLAPI program can support concurrent use of multiple haptic devices. Each haptic rendering context will generate forces for only 
one device, so to use multiple devices, you must use a separate rendering context for each device. During program startup, first 
initialize ALL of the haptic devices using the HDAPI hdInitDevice() function. Then, create a haptic rendering context for each device 
instance. It is important to note that the scheduler is automatically started when a haptic rendering context is created with a valid device 
handle. Furthermore, haptic devices initialized after the scheduler is started will not participate in the scheduler unless the scheduler is 
cycled off and then on. Therefore, the recommended initialization order is to initialize all devices prior to creating their respective haptic 
rendering contexts. 
Haptic rendering for multiple devices and contexts involves executing a separate rendering pass for each context. You must employ 
the use of the hlMakeCurrent() function in order to target rendering operations at a particular context and device. In general, this is the 
optimal approach, since the geometry required for each haptic rendering context is particular to the location of the respective proxy. It 
may also be desirable to begin a haptic frame and check for events from all contexts so that input and events can be processed for all 
device interactions prior to rendering new shapes and effects for each of the devices.
The HelloSphereDual sample program demonstrates concurrent use of two device instances in an HLAPI program.
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EXTENDING HLAPI
Custom Shapes
Custom shapes allow developers to extend the OpenHaptics API to create user-defined surfaces and constraints. Custom shapes are 
completely described through two routines: intersect and closest feature. These are specified using the hlCallback() routine with either 
the HL_SHAPE_INTERSECT_LS or HL_SHAPE_CLOSEST_FEATURE parameter. Intersect should be defined for contact shapes, 
closest point for constraint shapes.

Intersect Callback
The intersect callback routine should determine if a given line segment between and including a start and end point crosses the custom 
shape’s surface. If so, it should return the intersection point, normal at the intersection point, and face.

A shape defines its intersection callback routine through the following procedures:

hlCallback(HL_SHAPE_INTERSECT_LS, 

     (HLcallbackProc) intersectSurface, (void *)data);

bool intersectSurface(const HLdouble startPt[3], 

      const HLdouble endPt[3],

      HLdouble intersectionPt[3], 

      HLdouble intersectionNormal[3],

      HLenum *face,

      void *userdata);

The intersection point should determine the closest feature on the surface to the given point. That point should lie exactly on the 
surface. Failure to return a correct intersection point can result in slipthroughs or kicking.

The intersection normal should point directly away from the surface at the point of contact. Failure to return a correct intersection normal 
can result in unnatural stickiness when feeling the surface.

The face should return the sidedness of the intersection as either HL_FRONT or 

HL_BACK. For example, if the shape is a plane that was intersected from above the plane, face should be set to HL_FRONT and 
the intersection normal is the plane’s normal. If that plane was intersected from below, then face should be set to HL_BACK and the 
intersection normal is the inverse of the plane’s normal. Failure to return the correct face can result in slipthrough.

The userdata is for any additional data that the user needs to pass into the intersection routine.

The intersection routine for a sphere with radius r might look like this:

1. Check that the start point is outside or on the sphere, i.e. that the distance between itself and the center of the sphere is greater 
than or equal to the radius of the sphere.

2. Check that the end point is inside or on the sphere, i.e. that the distance between itself and the center of the sphere is less than or 
equal to the radius of the sphere.

3. Determine if and where the segment intersects with the sphere. This can be done using a binary search, quadratic formula, or other 
techniques.

4. If the segment intersects, calculate the normal at the intersection point. For a sphere, this is the direction of a vector from the center 
of the sphere to the intersection point. Normalize the vector so that it is of unit length.

5. Set the face as HL_FRONT. If the sphere is two-sided, then repeat this process with the start and end points reversed and return 
HL_BACK if an intersection is detected. Reverse the intersection normal, so that it points from the intersection point to the center of 
the sphere.



3D Systems, Inc. 125

Closest Feature Callback
The closest feature routine should return the closest point on the surface to the query point, as well as one or more local features that 
approximate the surface in the vicinity of that point. 

A shape defines its closest feature callback routine through the following procedures:

hlCallback(HL_SHAPE_CLOSEST_FEATURES,

     (HLcallbackProc) closestSurfaceFeatures, 

     (void*) data);

bool closestSurfaceFeatures(const HLdouble queryPt[3], 

              const HLdouble targetPt[3],

                 HLgeom *geom,

              HLdouble closestPt[3],

              void *userdata);

The closest point should represent the point on the surface closest to the query point. Failure to return the correct closest point may 
result in buzzing while the surface is being used as a constraint.

The closest feature should also generate at least one local feature geometry. These are used by the API to actually feel the surface; i.e. 
the surface is completely represented by its local features to the API. For example, a typical local feature is a plane that passes through 
the intersection point and whose normal is perpendicular to the surface. If the user is touching an edge, then closestSurfaceFeatures 
may generate two planes - one for each wall of the edge. Failure to generate correct local features may result in slipthrough or other 
instability.

The userdata is for any additional data that the user needs to pass into the routine.

The closest feature routine for a sphere with radius r might look like this:

1. Project the point onto the sphere’s surface. For a sphere, this involves creating a vector from the center of the sphere to the query 
point, scaling it so that its length is the radius of the sphere, and then adding that vector to the center of the sphere.

2. Generate a plane whose normal points away from the sphere at the closest point. For the sphere, this is just the vector from the 
center of the sphere through the closest point, normalized.

Custom Effects
HLAPI allows for custom force effect using a callback function interface. There are three main callback functions that need to be 
registered for proper execution of a custom force effect. They are: 

HL_EFFECT_START

HL_EFFECT_STOP 

HL_EFFECT_COMPUTE_FORCE

These callback functions will be invoked in the servo loop thread as entry points for starting, stopping or computing a force. These 
callback functions are registered using hlCallback(), which requires the callback type, callback function pointer, and user data as 
arguments. The following example shows how to register and start a custom callback effect.

HLuint effect = hlGenEffects(1);    

/* Provide some data to be used by the callback functions */

MyEffectData myData;

hlBeginFrame();

hlCallback(HL_EFFECT_COMPUTE_FORCE, (HLcallbackProc)

      computeForceCB, &myData);

hlCallback(HL_EFFECT_START, (HLcallbackProc) startEffectCB,     

      (void*)&myData);

hlCallback(HL_EFFECT_STOP, (HLcallbackProc) stopEffectCB,  

      (void*)&myData);

hlStartEffect(HL_EFFECT_CALLBACK, effect);

hlEndFrame();
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/* Execute main loop and stop the force effect some time later */

hlBeginFrame();

hlStopEffect(effect);

hlEndFrame();

hlDeleteEffects(effect, 1);

The callback functions bound to HL_EFFECT_START and HL_EFFECT_STOP will be invoked in the servo loop thread each time 
the effect is to be started or stopped respectively. Effects may be started and stopped during execution in response to events in the 
system that would disrupt the continuity of the effect force rendering, for instance, when calibration is updated or if a force error occurs. 
These routines should be used for initializing or cleaning up simulation state used by the force effect, such as the initial proxy position. 
The proxy position can be obtained from the HLcache object, which is queried using hlCacheGet*(). The HLcache provides access 
to state from the haptic rendering pipeline that may be useful for rendering the custom force effect. In addition, an HLcache container 
can be used to gain access to haptic rendering state from the pipeline, such as the current proxy position. Unlike events, the HLcache 
container provided to custom force effects contains data in workspace coordinates, so that it can readily be used in force effect 
computations.”

/*************************************************************************

 Servo loop thread callback called when the effect is started

*************************************************************************/

void HLCALLBACK startEffectCB(HLcache *cache, 

void *userdata)

{

 MyEffectData *pData = (MyEffectData *) userdata;

  

 fprintf(stdout, “Custom effect started\n”);

 /* Initialize the anchor point to be at the proxy  

  position */

 hlCacheGetDoublev(cache, HL_PROXY_POSITION, 

      pData->m_anchorPos);

}

 

/************************************************************************

 Servo loop thread callback called when the effect is stopped

*************************************************************************/

void HLCALLBACK stopEffectCB(HLcache *cache, void *userdata)

{

  fprintf(stdout, “Custom effect stopped\n”);

}

The callback function bound to HL_EFFECT_COMPUTE_FORCE is responsible for computing the effect force. A callback effect can 
either generate a force or it can modify the existing force computed by the haptic rendering pipeline. The current force from the pipeline 
is provided as the first parameter of the force callback function. In addition, an HLcache object can be used to gain access to haptic 
rendering state from the pipeline, such as the proxy position. Furthermore, HDAPI accessors can be used to query state and properties 
about the haptic device, such as device position, velocity, nominal max stiffness, nominal max force, etc. The following example code 
demonstrates computing a sawtooth drag effect, where an anchor point is moved whenever a spring force threshold is exceeded.
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/*********************************************************************

 Servo loop thread callback for computing a force effect

*********************************************************************/

void HLCALLBACK computeForceCB(HDdouble force[3], 

                HLcache *cache,

                void *userdata)

{

  MyEffectData *pData = (MyEffectData *) userdata;   

 /* Get the current proxy position from the state cache.

  Note: the effect state cache for effects is     

  maintained in workspace coordinates, so its data can   

  be used without transformation for computing forces. */  

  hduVector3Dd currentPos;

  hlCacheGetDoublev(cache, HL_PROXY_POSITION, currentPos);

  

 /* Use HDAPI to access the nominal max stiffness for the haptic device */

 HDdouble kStiffness;

 hdGetDoublev(HD_NOMINAL_MAX_STIFFNESS, &kStiffness);

 /* Compute a spring force between the current proxy  

  position and the position of the drag point. */

 hduVector3Dd myForce = kStiffness * 

   (pData->m_anchorPos - currentPos);

  /* Update the drag point if force exceeds the drag  

  threshold */

  static const HDdouble kDragThreshold = 1.0;

  if (myForce.magnitude() > kDragThreshold)

  {

    pData->m_dragPos = currentPos;

  }

  

  /* Accumulate our computed force with the current force from the haptic rendering pipeline. */

  force[0] += myForce[0];

  force[1] += myForce[1];

  force[2] += myForce[2];

}

Since callback effects are executed in the servo loop thread, it is important not to modify the user data from outside the servo 
loop thread. If a change needs to be made to user data in use by the callback effect, then it is recommended to use the 
hdScheduleSynchronous() callback mechanism from HDAPI for modifying that state.
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Integrating HDAPI and HLAPI
The HDAPI scheduler can be used alongside HLAPI to control the haptic device at runtime. One particularly useful technique is to 
schedule two asynchronous callbacks, one with max scheduler priority and the other with min scheduler priority. Since HLAPI allows for 
hdBeginFrame() / hdEndFrame() calls to be nested, this can allow a client to take ownership of the overall HDAPI frame boundaries 
without disturbing HLAPI. This enables an HDAPI program to utilize HLAPI for its proxy rendering and impedance control facilities yet 
still have ultimate control over the forces that get commanded to the haptic device, since the last hdEndFrame() will actually commit 
the force to the haptic device. 

When using HLAPI and HDAPI together, error handling should be deferred to HLAPI’s hlGetError() once the haptic rendering context 
has been created. HLAPI propagates errors from HDAPI, so that they can be handled through the same code path.
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10 DEPLOYING OPENHAPTICS APPLICATIONS 

The OpenHaptics toolkit exposes a programmatic interface to the Haptic Device (HD) abstraction layer runtime. Developers can use 
the toolkit to haptically enable their applications, and can distribute the runtime to third parties that run these applications (provided that 
they have purchased the right to do so). It is therefore important for an SDK developer to understand the run-time configuration of the 
underlying library, as well as the API that the SDK provides. 

RUN-TIME CONFIGURATION
The toolkit installation installs Dynamically Linked Libraries (DLLs) in the Windows System Directory (e.g. C:\Windows\System32). 
Those libraries are the PhantomIOLib42.dll, hl.dll, and the hd.dll. The PhantomIOLib42.dll is a private low-level library that is statically 
linked with the hl.dll and hd.dll, and therefore needs to be present on the target system. For more information see the OpenHaptics 
Installation Guide. 

DEPLOYMENT LICENSING
Deployment licenses work by requiring the application writer to supply vendor and application strings along with a password. The 
password is generated by Geomagic and is validated at run-time by OpenHaptics. 

The following APIs are used:

/* Licensing */

HLAPI HLboolean HLAPIENTRY hlDeploymentLicense(const char* vendorName,

                                               const char* applicationName,

                                               const char* password);

HDAPI HDboolean HDAPIENTRY hdDeploymentLicense(const char* vendorName,

                                               const char* applicationName,

                                               const char* password);

Sample Code:

<<<<< Start code sample

char*  vendorName = “ABC Software, Inc.”;  /*  Vendor name */

char*  appName    = “ABC Haptics”;         /*  Vendor application name */

char*  hdPassword   =”...........”; /* supplied by Geomagic*/

char*  hdPassword   =”...........”; /* supplied by Geomagic*/

HDboolean  hdLicenseStatus;

HLboolean  hlLicenseStatus;

hdLicenseStatus = hdDeploymentLicense(vendorName,

                                      appName,

                                      hdPassword);

if(hdLicenseStatus == false)

{

  /*  handle HD license failure */

}

hlLicenseStatus = hlDeploymentLicense(vendorName,

                                      appName,

10
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                                      hdPassword);

                                      hdPassword);

if(hdLicenseStatus == false)

{

  /*  handle HL license failure  */

}

>>>>> End   code sample

See the HL Console Deployment Example program for a complete code sample. A guide to all the installed Source Code Examples can 
be found in <OpenHaptics Install directory>/doc.
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11 UTILITIES

This chapter includes information about some of the utilities shipped with the OpenHaptics toolkit, including the following sections:

11

VECTOR/MATRIX MATH 133
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SNAP CONSTRAINTS 136
C++ HAPTIC DEVICE WRAPPER 137
HDUERROR 138
HDURECORD 139
HAPTIC MOUSE 139
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VECTOR/MATRIX MATH
The HD utilities include basic 3D vector and matrix math. Vector utilities include common operations such as dot products and cross 
products, as well as basic algebra. Matrix operations include basic transformations. 

Vector Utilities
The <HDU/hduVector.h> header exposes a simple API for common vector operations in three dimensional space. A brief description of 
the functions follows:

Default constructor
hduVector3Dd vec1;

vec1.set(1.0, 1.0, 1.0);

Constructor from three values
hduVector3Dd vec2(2.0, 3.0, 4.0);

Constructor from an array
HDdouble x[3] = {1.0, 2.0, 3.0};

hduVector3Dd xvec = hduVector3Dd(x);

Assignment
hduVector3Dd vec3 = hduVector3Dd(2.0, 3.0, 4.0);

Usual operations:
vec3 = vec2 + 4.0* vec1;

Magnitude:
HDdouble magn = vec3. magnitude();

Dot product:
HDdouble  dprod = dotProduct(vec1, vec2);

Cross product:

hduVector3Dd vec4 = crossProduct(vec1, vec2);

Normalize:
vec4.normalize();
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Matrix Utilities
The <HDU/hduMatrix.h> header exposes a simple API for common matrix operations. A brief description of the functions follows:

Default constructor
hduMatrix mat1;  // the identity matrix by default

HDdouble a[4][4] = { 

      {a1,a2,a3,a4},

      {a5,a6,a7,a8},

      {a9,a10,a11,a12},

      {a13,a14,a15,a16}

       };

mat1.set(a);

Constructor from sixteen values
hduMatrix mat(a1,a2,a3,a4,a5,a6,a7,a8,

       a9,a10,a11,a12,a13,a14,a15,a16);

Constructor from an array
HDdouble a[4][4] =  { 

      {a1,a2,a3,a4},

      {a5,a6,a7,a8},

      {a9,a10,a11,a12},

      {a13,a14,a15,a16}

        };

hduMatrix mat2(a);  

Assignment
hduMatrix mat3 = mat2;

Get values
double vals[4][4];

mat3.get(rotVals);

Usual operations
mat3 = mat2 + 4.0 * mat1;

Invert
mat3 = mat2.getInverse();

Transpose:
mat3 = mat2.transpose();

Create a rotation
hduMatrix rot;

rot = createRotation(vec1, 30.0*DEGTORAD); 

HDdouble rotVals[4][4];

rot.get(rotVals);

glMultMatrixd((double*)rotVals);
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The HDAPI defines both a float and double vector although other types can be created by the developer using the same methodologies.

hduVector3Dd and hduMatrix can both be used in glGetDoublev() functions. For example, the following are legal:

hduVector3Dd vector;

HDdouble array[3];

hdGetDoublev(HD_CURRENT_POSITION,vector);

hdGetDoublev(HD_CURRENT_POSITION,array);

They may also be used in the HLAPI hdGetDoublev() and hdSetDoublev() functions.

WORKSPACE TO CAMERA MAPPING
One of the challenging aspects of graphics programming are transformations among coordinate systems. The haptic device introduces 
yet another coordinate system, which we will refer to as “Workspace System.” Both the HLAPI and the HDAPI provide a generic way to 
query the dimensions of the Workspace System as shown below:

Using HDAPI:

HDdouble aUsableWorkspace[6]; 

HDdouble aMaxWorkspace[6]; 

hdGetDoublev   (HD_USABLE_WORKSPACE_DIMENSIONS,

      aUsableWorkspace); 

hdGetDoublev(HD_MAX_WORKSPACE_DIMENSIONS,

      aMaxWorkspace);

The HD_MAX_WORKSPACE_DIMENSIONS option returns the maximum extents of the haptic device workspace. However, due to the 
mechanical properties of the device, it is not guaranteed that forces can be reliably rendered in all that space.

However, using the HD_USABLE_WORKSPACE_DIMENSIONS results in a parallelepiped where it is guaranteed that forces are 
rendered reliably. It is clear that this, in general, is a subset of the max reachable space.

HLAPI also provides a generic way to query the dimensions of the Workspace System, as shown below:

HLdouble workspaceDims[6];

HLdouble maxWorkspaceDims[6];

hlGetDoublev(HL_WORKSPACE, maxWorkspaceDims);

hlGetDoublev(HL_MAX_WORKSPACE_DIMENSIONS, workspaceDims);

The HL_WORKSPACE dimension option returns current extents of the haptic workspace. HL_WORKSPACE is set-able by the user. By 
default it is set to 

HL_MAX_WORKSPACE_DIMENSIONS. HL_WORKSPACE is similar in function to GL_VIEWPORT in OpenGL.

The HL_MAX_WORKSPACE_DIMENSIONS option returns the maximum extents of the haptic workspace. HL_MAX_WORKSPACE_
DIMENSIONS is similar in function to GL_MAX_VIEWPORT_DIMS.

From the graphics side, you assign a geometric primitive’s vertices in an arbitrary coordinate system (the “world” system), and in 
general, transform those coordinates with a modelview matrix, to convert to what is called the eye system.

In the eye coordinate system certain points and vectors have a very simple form. For example, the eye is placed in the origin of the 
“eye” coordinate system, and the view vector points in the negative-z direction. In this coordinate system you then define a projection 
matrix, which defines a view frustum. You can define an orthographic (also called parallel) projection, where the view frustum is a 
parallelepiped. Alternatively, you can define a perspective projection, where the view frustum is a cut prism. In defining both projections, 
you have to define a near and far plane, which correspond to the range of z-coordinates in the eye space that are enclosed in the 
corresponding frusta.

A problem that programmers often face in integrating haptics with graphics is how to “align” the workspace system with the view 
frustum. Such a mapping is needed in order for the user to see what he/she feels (and vice versa). There are a few options for you to 
consider. An important question is which subset of the view frustum is “touchable?” You may want to allow the user to touch only within 
a range of z-values (in eye coordinates). In general, you will usually want to map a subset of the visible depth range onto the workspace 
z axis.

As a part of both the HD Utilities library (HDU) and the HL Utilities library (HLU) we provide functions that can be used to facilitate this 
mapping. We also provide source code, which can be used as a starting point for programmers who want to modify the details of the 
mapping. The following example shows the generation of a matrix using the HDU library used to render the end-effector position.
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HDdouble workspacemodel[16]; 

HDdouble screenTworkspace; 

GLdouble modelview[16]; 

GLdouble projection[16]; 

GLint viewport[4];

glGetDoublev(GL_MODELVIEW_MATRIX, modelview); 

glGetDoublev(GL_PROJECTION_MATRIX, projection);

hduMapWorkspaceModel(modelview, projection,

                     workspacemodel);

The hduMapWorkspaceModel call will assign the workspacemodel matrix. You can subsequently apply this matrix in the OpenGL matrix 
stack (as a last operation):

glMultMatrixd(workspacemodel);

Doing so will allow you to directly display the end-effector position on the screen, without transforming the end-effector coordinates.

The HLU library provides a similar function to facilitate mapping between the model and the workspace. 
hluModelToWorkspaceTransform generates a matrix that transforms from model to workspace coordinates.

HLdouble modelview[16];

HLdouble viewtouch[16];

HLdouble touchworkspace[16];

HLdouble modelworkspace[16];

glGetDoublev(GL_MODELVIEW_MATRIX, modelview);

hlGetDoublev(HL_VIEWTOUCH_MATRIX, viewtouch);

hlGetDoublev(HL_TOUCHWORKSPACE_MATRIX, touchworkspace);

hluModeltoWorkspaceTransform(modelview, viewtouch,   

                             touchworkspace,   

                             modelworkspace);

Matrix storage is compatible with OpenGL column major 4X4 format. An hduMatrix can be constructed from the matrix linear array read 
from OpenGL. This array can also be accessed using the array cast operator for hduMatrix. For example, the above HDU example 
could have used:

hduMatrix workspacemodel; 

hduMatrix modelview; 

hduMatrix projection;

SNAP CONSTRAINTS
The Snap Constraint library provides classes that can be used to implement simple constraints. The basic architecture includes 
a basic SnapConstraint class and derived PointConstraint, LineConstraint, PlaneConstraint classes. Furthermore, we provide a 
CompositeConstraint class, also derived from SnapConstraint, which allows the user to easily combine multiple constraints.

The basic functionality is provided by SnapConstraint::testConstraint function, which, for a given test point it calculates the proxy 
position a point that respects the constraint, and is as close as possible to the test point. The prototype of this function is:

virtual double testConstraint(const hduVector3Dd &testPt,

                              hduVector3Dd &proxyPt);
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C++ HAPTIC DEVICE WRAPPER
The Haptic Device wrapper provides a convenient encapsulation of common state and event synchronization between the haptic and 
graphic threads. The implementation allows for event callbacks to be registered for a number of common state transitions, like button 
presses, making and losing collision contact and device errors. Callback functions can be registered for invocation in both the haptic and 
graphics threads. The haptic thread detects the event, such as a button press, and then the event can be handled in either the haptic 
thread, graphics thread or both. In addition, state is managed such that a snapshot of state is provided along with each event. This is 
very useful when programming interactions that have haptic and graphic components, since it’s important to be dealing with the exact 
same event related state in both threads. For instance, the position of the haptic device when the button is pressed is an important piece 
of state that should be consistent for both threads, or else the haptic response and the graphic response to the button press will be 
spatially out of sync.

The Haptic Device Wrapper is structured as two implementations of the IHapticDevice interface. Derived classes HapticDeviceHT and 
HapticDeviceGT encapsulate state management for the haptic thread and graphics thread respectively. 

An example setup scenario is provided below: 

   /* Create the IHapticDevice instances for the haptic and graphic threads */

   m_pHapticDeviceHT = IHapticDevice::create(

    IHapticDevice::HAPTIC_THREAD_INTERFACE, m_hHD);

   m_pHapticDeviceGT = IHapticDevice::create(

    IHapticDevice::GRAPHIC_THREAD_INTERFACE, m_hHD);

   /* Setup a callback for button 1 down and up for the graphics thread */

   m_pHapticDeviceGT->setCallback(

    IHapticDevice::BUTTON_1_DOWN, button1EventCallbackGT, this);    

   m_pHapticDeviceGT->setCallback(

    IHapticDevice::BUTTON_1_UP, button1EventCallbackGT, this);    

 

In order for state and/or an event to propagate from the device, through the haptics thread and into the graphics thread, the 
IHapticDevice::beginUpdate and IHapticDevice::endUpdate methods need to be called as part of a main loop in both threads. The 
HapticDeviceHT instance can be updated within the haptic thread using an asynchronous callback scheduled with the HDAPI scheduler. 
The HapticDeviceGT instance can be updated in the graphics thread (or application thread) at the appropriate place where other events 
are dispatched. For instance, this might be appropriate as part of the rendering loop, idle processing or whatever periodic callback 
mechanism is available.

The following update call with the graphics thread will synchronize state and events from the haptics thread to the graphics thread.

/* Capture the latest state from the haptics thread. */

m_pHapticDeviceGT->beginUpdate(m_pHapticDeviceHT);

m_pHapticDeviceGT->endUpdate(m_pHapticDeviceHT);

Calling the above update routines will flush pending events from the haptics thread to the graphics thread and dispatch them. In addition, 
calling

 m_pHapticDeviceGT->getCurrentState() or m_pHapticDeviceGT->getLastState() 
will provide a snapshot of useful haptic rendering related state that is maintained by the HapticDevice class.
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Below is an example of an IHapticDevice event handler for a button press.

/*****************************************************************

 This handler gets called in the graphics thread whenever a button press is detected. Initiate a manipulation at the button press location.

*****************************************************************/

void HapticDeviceManager::button1EventCallbackGT(

    IHapticDevice::EventType event,

    const IHapticDevice::IHapticDeviceState * const pState,

    void *pUserData)

{

    HapticDeviceManager *pThis = static_cast<HapticDeviceManager       *>

                        (pUserData);     

    if (event == IHapticDevice::BUTTON_1_DOWN)

    {

        assert(!pThis->isManipulating());

        pThis->startManipulating(pState->getPosition());

    }

    else if (event == IHapticDevice::BUTTON_1_UP)

    {

        assert(pThis->isManipulating());

        pThis->stopManipulating(pState->getPosition());

    }

}

Please refer to the PointSnapping or PointManipulation examples within the HD graphics examples directory for more information.

HDUERROR
The hduError provides some extra error handling utilities. Functions of interest include:

• hduPrintError(FILE *stream, const HDErrorInfo *error, const char *message), which pretty-prints extended error information.

• HDboolean hduIsForceError(const HDErrorInfo *error), which is a convenience function that allows for easy determination on whether 
one has encountered a force error.

• hduIsSchedulerError(), which can test for errors related to the scheduler.
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HDURECORD
hduRecord is a logging tool used for recording data at servo loop rates. The utility gathers data for a specified number of servo loop 
ticks, then writes the data to the specified file. By default, hduRecord captures the device position, velocity, and force for each servo 
loop tick. A callback can also be specified to add additional data in the form of a string. This callback is called every tick and its contents 
appended to the data for that tick. For example, the callback could append transform information, error state, etc.

For example, here is a typical use of hduRecord to log the force, position, velocity, and gimbal angles for 5000 ticks.

char *recordCallback(void *pUserData)

{

    hduVector3Dd gimbalAngles;

    hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES,gimbalAngles);

    char *c = new char[200];

    sprintf(c,    “%lf %lf %lf”,     gimbalAngles[0],

         gimbalAngles[1],

         gimbalAngles[2]);

    return c;

}

FILE *pFile = 

   fopen(“c:\\temp\\recordServoLoopData.txt”,”w”);

hdStartRecord(pFile,recordCallback,NULL,5000);

HAPTIC MOUSE
The haptic mouse utility library can be used alongside HLAPI to emulate 2D mouse input. This allows your haptically enabled program 
to obviate the need for a 2D mouse, since the haptic device can now be used for selecting items from menus, toolbars, and general 
interaction with a windows GUI. Introducing the haptic mouse to a program that’s already using HLAPI only requires a few additional 
lines of code!

Setup
The haptic mouse utility can either share an existing haptic rendering context, or it can be used stand-alone with a dedicated haptic 
rendering context. The haptic mouse also requires one main window, which is used for mapping from the viewport to the screen as well 
as control over transitioning the mouse between its active and inactive state. The haptic mouse also requires the viewing transforms 
from OpenGL for mapping from the 3D coordinates of the model space to the 2D coordinates of the viewport. This allows the absolute 
3D position of the haptic device to be mapped to the 2D screen to control the mouse cursor and makes for a seamless transition 
between moving the 3D and 2D cursor on the screen. Lastly, a render function for the haptic mouse must be called periodically within 
an HL frame scope so that the haptic mouse can render haptics, such as the ambient friction effect when the haptic mouse is active. 
The program must also periodically call hlCheckEvents() for the haptic rendering context, since the haptic mouse registers a client 
thread motion event, which is used for monitoring transitions.

The haptic mouse minimally requires 4 function calls to be added to any HLAPI program.

HLboolean hmInitializeMouse(HHLRC hHLRC, 

                            const char *pClassName, 

                            const char *pWindowName);

Call this function to initialize the haptic mouse utility. The haptic mouse utility is a singleton, so it can only be used to emulate one 
mouse cursor. The utility requires access to an initialized haptic rendering context and the main top-level window for the application. 
The haptic mouse utilizes the HLAPI haptic rendering context for monitoring collision thread motion events and button presses. It 
also utilizes HLAPI for rendering a simple haptic effect while the mouse is active. Additionally, the haptic mouse requires access to 
the top-level window for the application for mapping to the screen and providing additional state used for transitioning. For Win32, the 
class name and window name can be obtained using the following two Win32 functions: GetClassName() and GetWindowText(). 
The benefit of an approach like this is that it’s readily portable, particularly when used with platform independent toolkits like GLUT and 
GLUI.

void hmShutdownMouse(); 
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Call this function as part of application shutdown, before the haptic rendering context is deleted.

void hmSetMouseTransforms(const GLdouble modelMatrix[16],

                          const GLdouble projMatrix[16],

                          const GLint viewport[4]);

Provide haptic mouse with the 3D transforms used by the main view of the application. These should be the same transforms used 
by the view in which the 3D haptic cursor is displayed. These transforms provide a mapping from the world coordinate space of the 
application to window coordinates of the viewport. These transforms should be provided to the haptic mouse utility whenever the view is 
reshaped, the projection transform changes or the camera’s modelview transform changes. 

void hmRenderMouseScene();

The haptic mouse utility needs to be called within the hlBeginFrame() / hlEndFrame() scope of the haptic rendering context. This 
allows it to perform its own haptic rendering, such as starting or stopping an ambient friction force effect. The haptic mouse also utilizes 
this call as the primary hook for transitioning between active and inactive state.

Haptic Mouse Transitioning
The default behavior of the haptic mouse is to automatically transition from inactive to active whenever the 3D cursor leaves the 
viewport. As soon as the 3D cursor moves outside of the viewport, a 2D mouse cursor will appear at that location and proceed to track 
the motion of the haptic device. When the 2D cursor moves back into the viewport, the haptic mouse will automatically discontinue 
mouse emulation and deactivate itself. The active state of the haptic mouse can always be queried using the hmIsMouseActive() 
function. This can be used, for instance, to skip haptic rendering of other shapes and effects in the scene, since they might interfere 
with the movement of the haptic mouse. Transitioning will only occur when the main window is in the foreground. This allows you to 
bring another application to the foreground and move over the region of the screen containing the original viewport without transitioning. 
In addition, transitions will be avoided while the mouse is captured. This prevents undesirable transitions while dragging with the 
mouse, invoking a drop down menu, or other interactions that temporarily capture mouse input. The mouse transition behavior can be 
modified using the hmEnable() and hmDisable() calls with the following two mode enums: 

• HM_MOUSE_INSIDE_VIEWPORT, and 

• HM_MOUSE_OUTSIDE_VIEWPORT 
These modes control whether the haptic mouse is allowed inside or outside of the viewport respectively. As mentioned above, the 
default behavior is that 

HM_MOUSE_INSIDE_VIEWPORT is disabled and

HM_MOUSE_OUTSIDE_VIEWPORT is enabled.

Customized Workspace Mapping
In some cases, it is desirable to change the workspace allocation to enable sufficient motion outside of the viewport. This is achieved 
by modifying the workspace used by the haptic rendering context via a call to hlWorkspace() prior to setting the TOUCHWORKSPACE 
transform of the context. The easiest way to think of this allocation is that the size and position of the viewport relative to the parent 
window should match the size and positioning of the context’s workspace relative to the haptic device’s overall workspace in X and Y. 
Determining new coordinates for the context’s workspace involves the following steps:

1. Save off the initial workspace.

4. Use the 2D window coordinates of the viewport within the main window to compute normalized coordinates. 

4. Apply the normalized coordinates of the viewport to the initial workspace to determine the corresponding coordinates within the 
workspace. You should only need to compute the update workspace coordinates for the X and Y dimensions, since we want to 
preserve the Z dimension of the original workspace.

4. Call hlWorkspace() with these modified workspace coordinates and update the TOUCHWORKSPACE transform using one of the 
HLU fit workspace routines.

Additional Resources
Please refer to the HapticMaterials example (see the <install directory>/examples) for a basic use case of the haptic mouse. Also, the 
full source code for the haptic mouse utility is provided in the utilities directory of the OpenHaptics toolkit. Feel free to tailor the utility to 
the needs of your application. For instance, it is possible to render extruded geometry that corresponds to 2D controls in the window or 
planes aligned with the sides of the view volume and window. This makes the haptic mouse an even more potent replacement for your 
plain old windows mouse.
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12 TROUBLESHOOTING

This chapter contains troubleshooting information about the following topics:

12
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ERROR HANDLING 149
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DEVICE INITIALIZATION
If the device has trouble initializing, use the “Geomagic Touch Diagnostic” application to ensure that the device is properly hooked up 
and functioning. Check that the string name used to identify the device is spelled correctly.

Geomagic Touch Diagnostic is installed with the Geomagic Touch Device Drivers and can be found in the <Geomagic install directory>/
Geomagic Touch Device Drivers.

Frames
Each scheduler tick should contain at most one frame per device, when 

HD_ONE_FRAME_LIMIT is enabled. Frames need to be properly paired with an hdBeginFrame() and hdEndFrame() of an active 
device handle. Frame errors include:

• Setting state for a device, outside a frame for that device. 

• Having more than one frame for a particular device within a single scheduler tick, if HD_ONE_FRAME_LIMIT is enabled.

• Mismatched begin/end for the same device.
Multiple frames can be enabled by turning off HD_ONE_FRAME_LIMIT. This is not recommended, however, since resulting behavior is 
likely to be device-dependent. Generally only one call to set motor/torques should be issued per tick, and all haptics operations should 
be encapsulated by the single begin/end. If in doubt, a simple way to accomplish this is to schedule a begin as the first operation that 
happens in a tick, and an end as the last, as shown in the following:

HDCallbackCode HDCALLBACK beginFrameCallback(void *)

{

 hdBeginFrame(hdGetCurrentDevice());

 return HD_CALLBACK_CONTINUE;

}

HDCallbackCode HDCALLBACK endFrameCallback(void *)

{

 hdEndFrame(hdGetCurrentDevice());

 return HD_CALLBACK_CONTINUE;

}

hdScheduleAsynchronous     (beginFrameCallback,

       (void*)0,

       HD_MAX_SCHEDULER_PRIORITY);

hdScheduleAsynchronous(endFrameCallback,

       (void*)0,

       HD_MIN_SCHEDULER_PRIORITY);

THREAD SAFETY
Since the HDAPI runs a fast, high priority thread, care must be taken to ensure that variable and state access is thread-safe. One 
common design error when using the HDAPI is to share variables between the application and scheduler thread. Since the scheduler 
thread is running at a much faster rate than the application thread, it is possible that changes in state in the servo loop thread may not 
be caught by the application thread, or the state may be changing while the application thread is processing it. 

For example, suppose the user creates an application that waits for a button press and then terminates. The application creates a 
scheduler operation that sets a button state variable to true when the button is pressed, and the user waits for a change in state. 

/* This is a scheduler callback that will run every servo loop tick and update the value stored in the button state variable */ 

HDCallbackCode HDCALLBACK queryButtonStateCB(void *userdata)

{

 HDint *pButtonStatePtr = (HDint *) userdata;

 hlGetIntegerv(HD_CURRENT_BUTTONS, pButtonStatePtr);

 return HD_CALLBACK_CONTINUE;
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}

HDint nCurrentButtonState = 0;

HDint nLastButtonState = 0;

HDSchedulerHandle hHandle = hdScheduleAsynchronous(

             queryButtonCB,

         &nCurrentButtonState,

         HD_DEFAULT_SCHEDULER_PRIORITY);

/* Here’s an example of INCORRECTLY monitoring button press transitions */

while (1)

{   

    if ((nCurrentButtonState & HD_DEVICE_BUTTON_1) != 0 &&

        (nLastButtonState & HD_DEVICE_BUTTON_1) == 0)

    {

        /* Do something when the button is depressed */

    }

    nLastButtonState = nCurrentButtonState;

    /* Now sleep or do some other work */

    Sleep(1000);

There are two problems with this example:

First, the button state variable is being shared between the button callback and the application thread. This is not thread safe because 
the application might query the button state while it is being changed in the servo loop thread. 

Second, since the application thread is periodically (relative to servo loop rates) querying the button state, it is possible for the 
application to completely miss a state change. Consider, for example, that the user might be able to press the button and then release 
between when the application is checking button states.

The correct methodology is to use an asynchronous call to check for button state transitions. Once a transition is detected, that 
information can be logged for whenever the user queries it. The user should then use a synchronous call to query that information so 
that it is thread safe. An example of a thread-safe application that exits after a button state transition is detected follows.

HDboolean gButtonDownOccurred = FALSE;

HDCallbackCode HDCALLBACK monitorButtonStateCB(void *userdata)

{

    HDint nButtons, nLastButtons;

    hdGetIntegerv(HD_CURRENT_BUTTONS, &nButtons);

    hdGetIntegerv(HD_LAST_BUTTONS, &nLastButtons);

    if ((nButtons & HD_DEVICE_BUTTON_1) != 0 &&

        (nLastButtons & HD_DEVICE_BUTTON_1) == 0)

    {

        gButtonDownOccurred = TRUE;

    }    
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    return HD_CALLBACK_CONTINUE;

}

HDCallbackCode HDCALLBACK queryButtonStateCB(void *userdata)

{    

    HDboolean *pButtonDown = (HDboolean *) userdata;

    

    *pButtonDown = gButtonDownOccurred;

    /* We sampled the button down, so clear the flag */

    gButtonDownOccurred = FALSE;

    return HD_CALLBACK_DONE;

}

/* Here’s an example of CORRECTLY monitoring button press transitions*/

HDSchedulerHandle hHandle = hdScheduleAsynchronous(

    queryButtonCB, &monitorButtonStateCB, 

  HD_DEFAULT_SCHEDULER_PRIORITY);

while (1)

{   

    HDboolean bButtonDown;

    hdScheduleSynchronous(queryButtonStateCB, &bButtonDown, 

        HD_DEFAULT_SCHEDULER_PRIORITY);

    

    if (bButtonDown)

    {

        /* Do something when the button is depressed */

    }

    /* Now sleep or do some other work */

    Sleep(1000);

}

RACE CONDITIONS
Race conditions are a type of threading error that occurs in environments where an operation needs to happen in a specific sequence 
but that order is not guaranteed. This is particularly an issue in multi threaded environments if two threads are accessing the same 
state or depending on results from each other. Race conditions are sometimes difficult to diagnose because they may happen only 
intermittently. Following guidelines for thread safety is the best way to prevent race conditions. Ensure that different threads are not 
executing commands that are order-dependent, and that data is shared safely between the scheduler and application.
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CALIBRATION
Calibration of the haptic device must be performed in order to obtain accurate 3D positional data from the device as well as to 
accurately render forces and torques. If the motion of the haptic device on the screen doesn’t seem to match the physical motion of the 
device, or if the forces don’t seem to correspond to the contacted geometry, then it is likely that calibration is at fault. It is best to ensure 
the device is properly calibrated by running the “Geomagic Touch Diagnostic” program, located in the “Geomagic\Geomagic Touch 
Device Drivers” directory. Calibration will persist from session to session, but may be invalidated inadvertently if the unit is unplugged or 
the control panel configuration is changed. 

Both HDAPI and HLAPI provide facilities for managing calibration at runtime. It is advised to not programmatically change calibration 
until the program is in a safe state to do so. For instance, the user may be in the middle of performing a haptic manipulation that would 
be interrupted if the calibration instantaneously changed. When changing calibration with HDAPI, it is safest to ensure that either force 
output is off, via a call to hdDisable(HD_FORCE_OUTPUT) or that force ramping is enabled, via a call to hdEnable(HD_FORCE_
RAMPING). Either of these features will mitigate the possibility of unintentional forces being generated due to the instantaneous change 
in device calibration. HLAPI provides its own handling for calibration changes, which automatically resets the haptic rendering pipeline 
following a call to hlUpdateCalibration().

BUZZING
Buzzing refers to high frequency changes in force direction. For example, the following scheduler operation will simulate buzzing along 
the X axis:

HDCallbackCode buzzCallback(void *data)

{

 static int forceDirection = 1;

 forceDirection *= -1;

 hdBeginFrame(hdGetCurrentDevice());

 hdSetDoublev(HD_CURRENT_FORCE,

                hduVector3Dd(forceDirection*3,0,0));

 hdEndFrame(hdGetCurrentDevice());

 return HD_CALLBACK_CONTINUE;

}

Buzzing is sometimes only audible, but depending on its magnitude and frequency it may also be felt. Unintentional buzzing can be 
caused by any variety of force artifacts. Often it is a result of the device attempting to reach some position but never getting there in 
a stable fashion. For example, in a standard gravity well implementation, the device is attracted to the center of the well when in its 
proximity:

hduVector3Dd position;

hdGetDoublev(HD_CURRENT_POSITION,position);

hduVector3Dd gravityWellCenter(0,0,0);

const float k = 0.6;

hduVector3Dd forceVector = 

       (gravityWellCenter-position)*k;

As k is increased, the gravity well becomes progressively unstable. Although it will always attract the device towards its center, it is 
likely to overshoot. If the force magnitude is consistently so high that the device is constantly overshooting the center, then buzzing will 
occur as the device continues to try to settle into the center.

Buzzing for shape based collisions can also occur if the k value, or stiffness, is set too high. Recall that shape based collisions generally 
use the F=kx formula, where k is the stiffness and x is the force vector representing the penetration distance into the object. If k is 
large, then the device may kick the user out of the shape as soon as the user even lightly comes in contact with the shape. If the user 
is applying some constant force towards the object, then the device can get into an unstable situation where in every iteration it is either 
giving the user a hard push out of the object or doing nothing. This will manifest as buzzing or kicking.
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For example, the following plane implementation would cause buzzing or kicking because as soon as the user touches the plane, a 
relatively large force kicks him off of it:

hduVector3Dd position;

hdGetDoublev(HD_CURRENT_POSITION,position);

if (position[1] < 0)

{

 hdSetDoublev(HD_CURRENT_FORCE,hduVector3Dd(0,5,0));

}

Buzzing therefore often suggests that the current force calculation is causing the device to not be able to settle into a stable position. 

Buzzing can also be caused by unstable computation of the position used for the position control. For example, there may be situations 
where the device attempts to get to a location but cannot settle on it, and instead reaches a metastable state. Consider the following 
force effect example. This creates a drag between the current position and a lagging object that attempts to minimize the distance 
between itself and the device position. Since the step size is large, the object will continue to oscillate around the device position while 
never reaching it, and the user will experience some humming or buzzing:

HDCallbackCode draggerCallback(void *)

{

 static hduVector3Dd lastPosition(0,0,0);

 hduVector3Dd position;

   hdGetDoublev(HD_CURRENT_POSITION,position);

    hduVector3Dd lastToCurrent = position-lastPosition;

    lastToCurrent.normalize();

    lastPosition += lastToCurrent;

    hdSetDoublev(HD_CURRENT_FORCE,lastPosition-position);

    return HD_CALLBACK_CONTINUE;

}

The correct way to implement this example is:

HDCallbackCode draggerCallback(void *)

{

 static hduVector3Dd lastPosition;

    const HDdouble stepSize = 1.0;

    hduVector3Dd position;

    hdGetDoublev(HD_CURRENT_POSITION,position);

    hduVector3Dd lastToCurrent = position-lastPosition;

    if (lastToCurrent.magnitude() > stepSize)

   {

     lastToCurrent.normalize();

     lastPosition += lastToCurrent*stepSize;

  }

    else

   {

     lastPosition = position;

   } 

    hdSetDoublev(HD_CURRENT_FORCE,lastPosition-position);

}
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There are several ways of debugging and mitigating buzzing. Each is described in further detail in the following pages.

• Check that the scheduler is not being overloaded.

• Scale down forces

• Check the position of the device

• Check force calculations

• Add damping/smoothing

• Detect and abort

Check that the scheduler is not being overloaded. 
The scheduler should be running at a minimum of 1000 Hz for stability. It is possible on some devices to run as low as 500 
Hz without force artifacts, but this is not recommended. Check that scheduler operations are not exceeding their allotted time. 
hdGetSchedulerTimeStamp() can be used to time how long the scheduler operations are taking; for example, schedule a callback 
that happens near the end of the scheduler tick and checks if the time has exceeded 1ms. In general, scheduler callbacks should take 
significantly less time than that allotted by the scheduler rate. The scheduler itself consumes some small amount of fixed processing 
time for its own internal operations per tick, and the application also needs to have some time for whatever functionality it is performing. 
If the scheduler operations are cumulatively taking too much time, consider amortizing some operations or having them run at a lower 
frequency than once every tick. Scheduler operations should not take more than the servo loop time slice to complete. 

The following illustrates a method for checking that the scheduler is not being overloaded:

HDCallbackCode dutyCycleCallback(void *data);

{

 double timeElapsed = hdGetSchedulerTimeStamp();

 if (timeElapsed > .001)

 {

  assert(false && “Scheduler has exceeded 1ms.”);

 }

 return HD_CALLBACK_CONTINUE;

}

main()

{

hdScheduleAsynchronous(dutyCycleCallback,

                      (void*)0,

        HD_MIN_SCHEDULER_PRIORITY);

}

Buzzing can also be mitigated by running the scheduler at higher rates. Typically, the more frequent the force calculations are being 
updated, the smaller the amplitude of the buzzing.

Scale down forces
Scaling down the magnitude of forces will decrease the amplitude of the buzzing. This can be done globally or per effect, for example 
if only one force effect is problematic. Most forces are modeled using Hooke’s Law, F=kx, so turning down k effectively diminishes the 
force contribution. As a general guideline, k should be kept below the 

HD_NOMINAL_MAX_STIFFNESS value. This value is device-dependant so one way to model forces would be to scale down the 
overall force based on the max stiffness value compared to the one used when the application was created.

For example, suppose an application was originally developed on the Geomagic Touch, which has a nominal max stiffness of .5:  

// Nominal max stiffness of device used in development

// of this application.

const float originalK = .5;

float nominalK;

hdGetFloatv(HD_NOMINAL_MAX_STIFFNESS,&nominalK);
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hduVector3Dd outputForce = getOutputForce(); 

// Original output force.

hdSetDoublev(HD_CURRENT_FORCE,

      outputForce * nominalK/originalK);

If the k value is below or within the nominal max stiffness recommendation but buzzing is still occurring, then the buzzing can be 
mitigated by further scaling down until it becomes imperceptible. However, this is generally only recommended as a last resort, because 
buzzing within normal stiffness may be indicative of an underlying problem in the force calculations. Scaling down forces also tends to 
lead to less compelling feel.

Some force effects may not use Hooke’s law but instead a non-linear model. In these situations, nominal max stiffness may not be a 
useful guide for determining how to scale forces.

Check the position of the device
Devices that use armatures are typically not uniformly stable across their physical workspace.. Buzzing may occur because some 
characteristic force is being applied to the device when the armature is nearly extended, but when that same force is applied closer to 
the center of the workspace it may not cause buzzing. If possible, operate the device close to the center of its workspace. One option is 
to check against 

HD_USABLE_WORKSPACE_DIMENSIONS to determine if the device is within its usable boundaries. If not, the application could scale 
down forces or shut them off completely.

Check force calculations
Use the hduRecord utility or variant to check that the forces being returned to the device are reasonable. For example, initial or “light” 
contact with an object should produce only a small amount of force. Recording or printouts could be started upon first contact with an 
object to inspect if the forces generated are sensible. 

Add damping/smoothing
Damping is an effective tool for smoothing velocity and thus can mitigate buzzing. A typical damping formula adds a retarding force 
proportional to the velocity of the device:

// Original output force.

hduVector3Dd outputForce = getOutputForce(); 

const HDfloat dampingK = .001;

hduVector3Dd velocity;

hdGetDoublev(HD_LAST_VELOCITY,velocity);

hduVector3Dd retardingForce = -velocity*dampingK;

hdSetDoublev(HD_CURRENT_FORCE,

      outputForce+retardingForce);

An alternative is to add drag by using a low pass filter mechanism for positioning. Instead of using the actual device position for 
calculations, force algorithms might instead use the average of the current position and history information.

hduVector3Dd actualPos, lastPos;

hdGetDoublev(HD_CURRENT_POSITION,actualPos);

hdGetDoublev(HD_LAST_POSITION,lastPos);

hduVector3Dd dragPos = (actualPos+lastPos)/2.0;

hduVector3Dd outputForce = doForceCalculation(dragPos);

As with scaling down forces, damping or smoothing should be seen as a last resort since it mitigates the problem versus addressing its 
root. Few real world objects use damping, so this solution will likely feel unnatural. In some cases, damping and smoothing can even 
lead to increased instability.

Detect and abort
As a last recourse, buzzing can be detected and made to cause an abort. For example, if an application buzzes only infrequently and 
the cause is non-preventable, then some safety mechanism can be introduced to signal an error or shut down forces if buzzing occurs. 
Since buzzing is simply rapid changes in velocity, one such buzzing detection mechanism might look at the history of device velocity 

and determine if the velocity direction is changing beyond a certain frequency and exceeds some arbitrary amplitude.
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FORCE KICKING
Kicking is caused by large discontinuities in force magnitude. For example, the following will cause kicking:

static int timer = 0;

timer = (timer + 1 ) % 1000;

if (timer < 500)

 hdSetDoublev(HD_CURRENT_FORCE,hduVector3Dd(5,0,0));

else

 hdSetDoublev(HD_CURRENT_FORCE,hduVector3Dd(-5,0,0));

On the other hand, gradually ramping up the force to that magnitude will mitigate this:

static int timer = 0;

timer = (timer + 1 ) % 1000;

{

    hdBeginFrame(hdGetCurrentDevice());

    hdSetDoublev(HD_CURRENT_FORCE,

                 hduVector3Dd(5*timer/1000.0,0,0));

    hdEndFrame(hdGetCurrentDevice());

}

return HD_CALLBACK_CONTINUE;

Unintentional kicking is usually a result of the application conveying an overly large instantaneous force to the device; in other words, a 
force magnitude that exceeds the physical capabilities of the device. Safety mechanisms such as enabling: 

HD_MAX_FORCE_CLAMPING, HD_SOFTWARE_FORCE_LIMIT, or 

HD_SOFTWARE_VELOCITY_LIMIT, HD_SOFTWARE_FORCE_IMPULSE_LIMIT can help catch these errors and either signal an 
error or put a ceiling on the amount of force that can be commanded. 

Kicking can also result even in the absence of bugs in force calculations if the scheduler thread is suspended, such as in debugging. 
For example, consider a simple plane implementation:

hduVector3Dd position;

hdGetDoublev(HD_CURRENT_POSITION,position);

if (position[1] < 0)

{

 const HDfloat k = .5;

 hdSetDoublev(HD_CURRENT_FORCE,

     hduVector3Dd(0,

         -position[1]*k,

         0));

}

Ordinarily this plane works in a stable manner; whenever the user attempts to penetrate the plane, the plane applies some resistance 
force proportional to the penetration distance. However, suppose this application was run in debug mode and a breakpoint put inside 
the callback. At the breakpoint, the scheduler thread would be temporarily suspended; if the user moved the device significantly in the 
-Y direction, then continued execution of the program, the device would suddenly be instantaneously buried to a large degree and the 
ensuing resistance force could kick the device upward violently.

In general, extreme care must be taken if the scheduler thread is suspended such as during debugging. Hold onto the device or put it 
into a safe position (such as in an inkwell) while stepping through execution.

During development, it is important that the developer take care in commanding forces and handling the device during operation. The 
device has both software and hardware safety mechanisms for maximum force, but this does not guarantee that it will never give a 
substantial kick. In particular, applications typically assume the device is being held. Small forces that are felt when the user is holding 
the device may generate a large velocity if the device is free. To mitigate this, either artificially scale down forces when experimenting 
with force effects, or use HD_CURRENT_SAFETY_SWITCH to prevent forces from being commanded inadvertently.
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It is strongly advised that the developer not disable safety routines such as 

HD_FORCE_RAMPING and HD_SOFTWARE_VELOCITY_LIMIT, and 

HD_SOFTWARE_FORCE_IMPULSE_LIMIT unless there is some compelling reason to do so. Those provide a level of safeguard for 
protection of the device and user.

NO FORCES
If a device initializes but does not generate forces: 

1. Check that the hardware is working correctly using Geomagic Touch Diagnostic.

2. Use Geomagic Touch Diagnostic to recalibrate the device.

3. Then check that a call is being made to enable HD_FORCE_OUTPUT or verify through hdIsEnabled() that force output is on. 

4. If the application still does not generate forces, then check that setting HD_CURRENT_FORCE is not producing an error. 

Sometimes devices may generate low or no forces because of error safety conditions. Whenever an HD_EXCEEDED error occurs, 
the device amplifiers will toggle and then ramp to normal output. In this case, those safety mechanisms can be disabled. A word of 
caution, safety conditions are usually triggered as a result of some error in force calculations that may cause the device to behave 
uncontrollably. Also, placing the Geomagic Touch gimbal into the inkwell will cause forces to ram, so initially forces may appear low.

DEVICE STUTTERING
Device stuttering is a sometimes audible condition where the motors toggle off and on because the servo loop is being stopped and 
started. This generally happens after a force or safety error, or if the servo loop is overloaded. Use getSchedulerTimeStamp() at the 
end of a scheduler tick to check that the scheduler is running at the desired rate versus being overloaded by operations that cannot all 
be completed within its normal time slice.

ERROR HANDLING
Errors should be checked for occasionally. Note that errors may not correspond to the immediately previous call or even the same 
thread. There is only one error stack, so errors that occur in the scheduler thread will appear when queried by the application. As a 
result, an error may also in the stack well after the call that lead to it. 

It is also important to note, in the case of multiple devices, the device ID that the error is associated with. If all else fails, note the 
internal device error code and contact the vendor for information on what might have generated that. The codes available in the API 
represent broad categories of errors where many underlying device errors may map to the same code if they are from similar causes.
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